Recruitment trends of Atlantic and shortnose sturgeon in the Altamaha River, Georgia: Are we on the road to recovery?

Copyrighted data: Do not use without direct permission from the authors

Douglas L. Peterson & Michael S. Bednarski
Warnell School of Forestry and Natural Resources
University of Georgia
Objectives

1. Quantify annual recruitment of ATL and SNS
2. Identify key factors affecting annual recruitment of ATL and SNS
3. Using information from 1 and 2,
 - simulate historic SNS abundance
 - assess population trend in ATL
Sampling

- Anchored monofilament gill and trammel nets soaked primarily on slack tides

- 91.4 m length x 3.3 m depth
 - Gill nets: 7.6, 10.2, and 15.2-cm (stretched mesh)
 - Trammel: 7.6 x 30.4 cm

- Each ATL and SNS weighed, measured, and PIT tagged
Recruitment Estimation

- Huggins closed-capture model to estimate Age-1 abundance of SNS and ATL

- Linear regression and AICc to evaluate different explanatory variables
Population Simulation - SNS

- Shortnose sturgeon
 - Estimate historic recruitment ➔ historic flow levels
 - Age-structured population model to estimate historic abundance
 - Current abundance estimates compared to historic abundance as to evaluate “recovery status”
RESULTS - ATL
Catch (Age-1 ATL)

<table>
<thead>
<tr>
<th>Year</th>
<th>Marked</th>
<th>Recaptured</th>
<th>Effort (nets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>79</td>
<td>4</td>
<td>93</td>
</tr>
<tr>
<td>2005</td>
<td>227</td>
<td>24</td>
<td>98</td>
</tr>
<tr>
<td>2006</td>
<td>53</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>2007</td>
<td>220</td>
<td>14</td>
<td>118</td>
</tr>
<tr>
<td>2008</td>
<td>131</td>
<td>10</td>
<td>161</td>
</tr>
<tr>
<td>2009</td>
<td>316</td>
<td>10</td>
<td>218</td>
</tr>
<tr>
<td>2010</td>
<td>1020</td>
<td>67</td>
<td>344</td>
</tr>
<tr>
<td>Total</td>
<td>2046</td>
<td>131</td>
<td>1122</td>
</tr>
</tbody>
</table>

Introduction | Methods | Results | Conclusions
Recruitment (ATL)

Introduction

Methods

Results

Conclusions
Recruitment Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters</th>
<th>AICc</th>
<th>ΔAICc</th>
<th>Relative likelihood</th>
<th>Weight</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years post moratorium</td>
<td>3</td>
<td>25.091</td>
<td>0.000</td>
<td>1.000</td>
<td>0.657</td>
<td>0.659</td>
</tr>
<tr>
<td>Average summer flow</td>
<td>3</td>
<td>29.260</td>
<td>4.169</td>
<td>0.124</td>
<td>0.082</td>
<td>0.380</td>
</tr>
</tbody>
</table>

Models with <0.066 weight of evidence:

- Average summer temperature
- Low flow duration: summer
- High flow duration: fall
- High flow duration: summer
- High flow duration: spring
- High flow duration: spring through early summer
Effects of Moratorium

Introduction

Methods

Results

Conclusions

Age 1 Abundance

Years post moratorium

R² = 0.658
Density Dependence (ATL)

\[y = -0.0335x + 374.22 \]
\[R^2 = 0.8307 \]
RESULTS - SNS
Adult Abundance (SNS)

Introduction Methods Results Conclusions
Age-1 SNS Catch

<table>
<thead>
<tr>
<th>Year</th>
<th>Marked</th>
<th>Recaptured</th>
<th>Effort (nets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>252</td>
<td>8</td>
<td>104</td>
</tr>
<tr>
<td>2005</td>
<td>8</td>
<td>0</td>
<td>129</td>
</tr>
<tr>
<td>2006</td>
<td>78</td>
<td>2</td>
<td>106</td>
</tr>
<tr>
<td>2007</td>
<td>3</td>
<td>0</td>
<td>107</td>
</tr>
<tr>
<td>2008</td>
<td>4</td>
<td>0</td>
<td>165</td>
</tr>
<tr>
<td>2009</td>
<td>5</td>
<td>1</td>
<td>218</td>
</tr>
<tr>
<td>2010</td>
<td>86</td>
<td>8</td>
<td>344</td>
</tr>
<tr>
<td>Total</td>
<td>436</td>
<td>19</td>
<td>1173</td>
</tr>
</tbody>
</table>
Recruitment Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters</th>
<th>AICc</th>
<th>ΔAICc</th>
<th>Relative likelihood</th>
<th>Weight</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>High flow duration: spring and early summer</td>
<td>3</td>
<td>14.200</td>
<td>0.000</td>
<td>1.000</td>
<td>0.980</td>
<td>0.980</td>
</tr>
</tbody>
</table>

Models with <0.010 weight of evidence:

- High flow duration: spring
- Summer temperature: hours >30.1°C
- High flow duration: summer
- High flow duration: spring and fall
- High flow duration: spring through summer and fall
- Fall low flow duration

Introduction

Methods

Results

Conclusions
Recruitment vs Flow

Introduction

Methods

Results

Conclusions

The graph shows the relationship between high flow duration (days) in the spring-early summer and age-1 abundance. The equation $R^2 = 0.980$ indicates a strong correlation. The data points are plotted on a graph with the x-axis representing the high flow duration and the y-axis representing age-1 abundance.
Density Dependence (SNS)

The graph shows the relationship between Age-1 SNS Abundance and Average SNS Age-1 FL (mm). The equation for the line of best fit is:

\[y = -0.0124x + 360.37 \]

with

\[R^2 = 0.8041 \]
Simulation II - Historic Abundance (SNS)

Introduction

Methods

Results

Conclusions
Status - 2010

Adult SNS Abundance

Introduction Methods Results Conclusions
Management Implications - ATS

– ATL recruitment suggest moratorium may be working
 • Recent increase in recruitment coincides with maturation of first protected cohorts (1996)
 • Next few years will be critical to positive population trend

– Proposed Listing Rule specifically cites Altamaha population as: “neither increasing nor decreasing”
Simulation modeling suggest that the Altamaha SNS population is currently within the range of historic abundance, but current threats include:

• bycatch
• increasing human demands for water

– Density dependent growth patterns in juvenile SNS and ATL suggest that suitable nursery habitat is a key limiting factor (critical habitat) for both ATL and SNS in southern rivers
Management Implications - ATL

SNS recruitment linked to spring river flows
- 100x variation in recruitment 2004-2010
- Flow regime changes may have population level effects
- Future years of recruitment data will confirm/refine models

Simulation modeling suggests that the Altamaha SNS population is currently within the range of historic abundances, but ongoing threats include:
- bycatch
- Potential chances in flow regime
Acknowledgements

• National Marine Fisheries Service
• Georgia Department of Natural Resources
• GCE-LTER
• David Higginbotham
• Dr. Jim Peterson
• Hunter Roop, Ryan Harrell, Brian Leo, Robert Bahn, Andrew Taylor, Matthew Streich, Brock Dibble, Jonathon Brown, Tim Clay, Paul Schueller, Rob DeVries