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Precipitation Runoff Modeling System

® Deterministic

" Distributed parameters

" Physical process based
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Hydrologic model

" Inputs

" Daily precipitation, minimum and maximum temperature

" Maurer (2002) forcings for 1950 - 1999

" Qutputs

" Daily streamflow

" Daily components of hydrologic cycle
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Apalachicola-Chattahoochee-Flint Basin (ACF)

TENNESSEE

SOUTH
CAROLINA

50,700 km?

Metropolitan Atlanta
" >5 million people e Y Senon

Chattahoochee River T\ B

_ Chattahoochee River Basin

" Heavily regulated SR RE=ETE

GEORGIA

Flint River

" Relatively unregulated
" Heavy agriculture

FLORIDA
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Hydrologic model (Delineation)

~ NORTH

" Coarse model e [ e "

SOUTH
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m 258 Hydrologic response .
units (HRUS) | AL

Explanation

ALABAMA A USGS streamgage

Hydrologic Response Units
K% area not modeled

® 128 stream segments

" 57 streamgages
" 56 USGS
= 1 USACE

FLORIDA
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Hydrologic model (parameterization)
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" Spatial parameters
" GISinterface used
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Hydrologic model (parameterization)

" \Water bodies
" ‘. arge’ mainstem
Reservoirs
" Chattahoochee (5)
" Flint (2)
" Apalachicola (1)

" ‘Small’ depression
storage

® Several thousand




Hydrologic model (calibration)

" Shuffled Complex S pr—
Evolution (SCE) Method BEcuu

each Round

" Step-wise process
" Step 1 - Solar Radiation
" Step 2 - Potential ET
Step 3 — Water Balance
Step 4 — Timing of Flows

- Calibration Run
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Hydrologic model (calibration)

TENNESSEE l o
T === j}a

SOUTH
CAROLINA

® Coarse-scale model

GEORGIA

= 35 calibration points

ALABAMA .
Explanation

A Calibration gages
A Flow substitution gages
Calibration round

= 6 flow substitution points L g =
777 Round 3
|:|Round4

" Replace simulated Q with ¥ o
observed Q downstream ) vea
of reservoirs

FLORIDA
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Calibration — Flint River @ Montezuma
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Calibration — Flint River @ Montezuma

Annual Nash Sutcliff Goodness of Fit 3 Daily Mean Streamflow
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Fine-resolution models

® Six watersheds selected
Explanation

Upper Chattahoochee ol i e

\ Y
. ~ . I Upper Chattahoochee R
R I V er - Chestatee R

Chestatee River | — [

Chipola River N A — i

: [ | ACF coarse model
Ichawaynochaway Creek
Potato Creek

Spring Creek

Range (396 — 2,690 km?)
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&% Nested Hydrologic Models

i,
Resolution %m\g
Hydrologic g;’

B
Model

Streamgage

Hydrologic
Response

stream gages and real-world
geographic locations to ensure
consistency when nesting models




Pull a stand-alone
e coarse resolution
Coarse e model from the larger

Resolution ‘4';@

Hydrologic g"

\Y[eYe[=Y

stream gages and real-world
geographic locations to ensure
consistency when nesting models
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Pull a stand-alone
coarse resolution
model from the larger
one

A
Y A

o

Coarse @'\\
Resolution lff(%?

Hydrologic %’,‘ '
o il
v

Coarse resolution HRUs based on

stream gages and real-world
geographic locations to ensure
consistency when nesting models

Nest a stand-alone fine
resolution model

Stand-alone models can
be re-calibrated and
nested back into the

coarse resolution model




Some provisional results

® Potato Creek

Explanation

A USGS streamgage
- Upper Chattahoochee R

o ‘l"\\. }‘ ' )
" Comparison of coarse ) — b
subbasin to fine resolution & ' [ Potato Ok

- Ichawaynochaway Ck

. {
model -— : I soring ck
% : I chipola R

ACF coarse model

B Coarse model has 4 HRUs
and 2 stream segments

" Fine model has 427 HRUs
and 221 stream segments
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Example nested hydrologic models

)




Projected climate data

= Statistically downscaled
" Multi-GCM output (Texas Tech group)

" Bayesian model averaging weights applied to
GCM output (Penn State group)

" Initially 4 GCMs for 4 emissions scenarios

®" Dynamically downscaled

" The North American Regional Climate Change
Assessment Program (NCAR)

" Hostetler (USGS National Research Program)
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Emissions scenarios

1 post-SRES range (80%) / post-SRES (max)
/

= Storylines of future — B
greenhouse gas emissions

B2
— A1B
—_— A2
e ATFI

= AlFi

" Very rapid economic growth

" Global population peaks mid-
century and declines thereafter

Rapid introduction of new and
more efficient technologies

(Fi) — fossil fuel intensive
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Adapted from IPCC AR4 SYR synthesis report (2007) — Figure 3.1




Emissions scenarios

1 post-SRES range (80%) / post-SRES (max)
/

= Storylines of future — B
greenhouse gas emissions

B2
— A1B
—_— A2
e ATFI

" Bl

" Rapid changes in economic
structures toward a service and
information economy

Global population peaks mid-
century and declines thereafter e~

Reductions in material intensity post-SRES (min)

Introduction of clean and
resource-efficient technologies
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Adapted from IPCC AR4 SYR synthesis report (2007) — Figure 3.1




Emissions scenarios

Year 2000 constant
concantrations

—_— 20 century

:

0051152253 354455556657 75

Adapted from IPCC AR4 SYR synthesis report (2007) — Figure 3.2




Projected urban

" SLEUTH
" Urban growth
= 2010 - 2100
" Given probability surface

" Convert probability
surface to percent
Impervious
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Projected urban

" SLEUTH
" Urban growth
= 2010 - 2100
" Given probability surface

" Convert probability
surface to percent
Impervious




Projected vegetation
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" VDDT TELSA — 0 -
" Vegetation dynamics ' *-
= 2000 - 2100

" Modeled classes
converted to National
Land Cover Dataset
(NLCD) classes

" NLCD classes used
for PRMS parameters
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Projected vegetation

" VDDT TELSA

" Vegetation dynamics
= 2000 — 2100

" PRMS modeled classes
" Bare ground
" Grass
" Shrub
" Tree

2000 Base land cover of HRUs

m Bare ground
M Grass

1 Shrub

B Tree
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. i 2000 Base land cover of HRUs
Projected vegetation

2020 Projected land cover of HRUs

[ ] VDDT TELSA ® Bare ground

m Grass

" Vegetation dynamics " s
= 2000 - 2100

" PRMS modeled classes
" Bare ground
" Grass
" Shrub
" Tree

zUSGS




2000 Base land cover of HRUs

2020 Projected land cover of HRUs

[ VDDT TELSA 2040 Projected land cover of HRUs
" Vegetation dynamics
= 2000 — 2100 oo

" PRMS modeled classes  Shrub
" Bare ground e
" Grass
" Shrub
" Tree

Projected vegetation

m Bare ground
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. i 2000 Base land cover of HRUs
Projected vegetation

" Vegetation dynamics

2 .
] 2000 - 2100 060 Projected land cover of HRUs

" PRMS modeled classes
" e B
- Grass i Shrub
® Shrub H Tree
" Tree
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. i 2000 Base land cover of HRUs
Projected vegetation

2020 Projected land cover of HRUs

" Vegetation dynamics
" PRMS modeled classes

e 2080 Projected land cover of HRUs
Bare ground

" Grass

® Shrub ® Bare ground
m Grass

" Tree w Shrub
M Tree
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. i 2000 Base land cover of HRUs
Projected vegetation

2020 Projected land cover of HRUs

" Vegetation dynamics
" PRMS modeled classes

e 2080 Projected land cover of HRUs
Bare ground
" Grass

® Shrub 2100 Projected land cover of HRUs

" Tree
M Bare ground
M Grass
i Shrub
N Tree
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Some provisional results

" ACF coarse model

Explanation
A USGS streamgage

‘-‘.\\l }‘ X 5
" Annual water balance of - — b

precipitation, ET, runoff, Oy 2l [ Potto

& - Ichawaynochaway Ck
',
and storage ,, - I oo
% : I chicola R

ACF coarse model

® |nitial ensembles of 3 GCMs
for 2 emissions scenarios

® With and without land cover
change
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Hydrologic simulation — A1Fi only
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20 year average annual water budget components for historical and A1Fi emissions
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Hydrologic simulation — A1Fi + LC

20 year average annual water budget components for historical and A1Fi emissions
scenario with projected urban and vegetation change
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Hydrologic simulation — B1 only

20 year average annual water budget components for historical and B1 emissions
scenario
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Hydrologic simulation —B1 + LC

20 year average annual water budget components for historical and B1 emissions
scenario with projected urban and vegetation change
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Paving the way (pilot study)

Methods developed in
ACF will be/are being
used for hydrologic
models across the
nation

" |Lake Michigan Basin
® Yellowstone River Basin

= Albemarle-Pamlico Basin
® Roanoke River

Yellowstone

Lake Michigan
Basin
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Uses of simulation output

" Results from PRMS
simulations are being
used as inputs for:

Yellowstone

= Stream temperature
modeling

" Aquatic occupancy
modeling




Hydrologic and stream
temperature modeling

Upper Chattahoochee River study area
- 815 km? drainage area
- 600 Hydrologic response units
- 328 Stream segments

Upper Roanoke River study area
- 994 km? drainage area
- 790 Hydrologic response units
Explanation

- 554 Stream segments iy
| Ablemarle-Pamlico Basin
|:] Apalachicola-Chattahoochee-Flint Basin
*f' 3 . I Upper Chattahoochee Model Area

\.\"“\ I Upper Roanoke Model Area

0 50 100 200 300




Upper Chattahoochee River Upper Roanoke River

Explanation

I Hydrologic Response Unit (HRU)
A Stream gage




Summary

" ACF Basin being modeled at multiple resolutions
® 1 coarse resolution model for entire ACF River Basin
® 6 fine resolution models for selected sub-basins

= Streamflow is being simulated for future conditions using
downscaled climate data on a daily time-step

Parameters vary with time based on vegetation and urbanization
projections

" The methods developed in this basin are being used in the
development of PRMS models in other basins to facilitate model
consistency
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