AMENDMENT 14 TO THE
ATLANTIC MACKEREL, SQUID, AND BUTTERFISH (MSB)
FISHERY MANAGEMENT PLAN (FMP)

Final Environmental Impact Statement

Mid Atlantic Fishery Management Council (MAFMC) in cooperation with
the National Marine Fisheries Service (NMFS or “NOAA Fisheries”)

Abstract: Amendment 14 considers alternatives that would improve monitoring of the fisheries managed under the Atlantic mackerel, Squid, and Butterfish (MSB) Fishery Management Plan (FMP) and alternatives to reduce catch of river herring (alewife and blueback herring) and shad (American shad and hickory shad) in these fisheries. This document provides decision-makers and the public with an evaluation of the environmental, social, and economic effects of changes to the MSB FMP pursuant to meet these goals, and addresses the requirements of the National Environmental Policy Act and Executive Order 12866.

Draft Adopted: October 12, 2011
Final Adopted: June 14, 2012
FEIS Submitted: February 26, 2013
NOAA Approved: August 5, 2013

CONTACT: Jason Didden, (302) 526-5254
MAFMC, Room 2115, Federal Building,
300 South New Street, Dover, DE 19904

A Publication of the Mid-Atlantic Fishery Management Council pursuant to
National Oceanic and Atmospheric Administration (NOAA) Award NA10NMF4410009
1.1 LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Example River Herring Caps for Mackerel</td>
<td>58</td>
</tr>
<tr>
<td>Table 2</td>
<td>Example Shad Caps for Mackerel</td>
<td>59</td>
</tr>
<tr>
<td>Table 3</td>
<td>Example River Herring Caps for Longfin Squid</td>
<td>61</td>
</tr>
<tr>
<td>Table 4</td>
<td>Example Shad Caps for Longfin Squid</td>
<td>63</td>
</tr>
<tr>
<td>Table 5</td>
<td>Direct-Non-Target Impact Schematic</td>
<td>66</td>
</tr>
<tr>
<td>Table 6</td>
<td>Distribution of Mackerel Revenues in and out of RH/S Area</td>
<td>67</td>
</tr>
<tr>
<td>Table 7</td>
<td>Distribution of Longfin Squid VTR catches in and out of RH/S Area</td>
<td>68</td>
</tr>
<tr>
<td>Table 8</td>
<td>Alternative Impact Summary Table</td>
<td>90</td>
</tr>
<tr>
<td>Table 9</td>
<td>Summary of the problems/needs for actions and purposes</td>
<td>103</td>
</tr>
<tr>
<td>Table 10</td>
<td>History of FMP Development</td>
<td>107</td>
</tr>
<tr>
<td>Table 11</td>
<td>Sea Days Associated with Alt. 5e C.V. Targets</td>
<td>157</td>
</tr>
<tr>
<td>Table 12</td>
<td>Example River Herring Caps for Mackerel</td>
<td>164</td>
</tr>
<tr>
<td>Table 13</td>
<td>Example Shad Caps for Mackerel</td>
<td>165</td>
</tr>
<tr>
<td>Table 14</td>
<td>Example River Herring Caps for Longfin</td>
<td>167</td>
</tr>
<tr>
<td>Table 15</td>
<td>Example Shad Caps for Longfin</td>
<td>168</td>
</tr>
<tr>
<td>Table 16</td>
<td>Direct/Non-Target Impact Schematic</td>
<td>171</td>
</tr>
<tr>
<td>Table 17</td>
<td>Key Species Observed Taken and Discarded in Directed Trips for Mackerel, Based on Unpublished NMFS Northeast Fisheries Observer Program Data and Unpublished Dealer Weighout Data from 2006-2010. (see text for criteria). There are 2204.6 pounds in one metric ton</td>
<td>205</td>
</tr>
<tr>
<td>Table 18</td>
<td>Key Species Observed Taken and Discarded in Directed Trips for Illex, Based on Unpublished NMFS Northeast Fisheries Observer Program Data and Unpublished Dealer Weighout Data from 2006-2010. (see text for criteria). There are 2204.6 pounds in one metric ton</td>
<td>206</td>
</tr>
<tr>
<td>Table 19</td>
<td>Key Species Observed Taken and Discarded in Directed Trips for Longfin Squid, Based on Unpublished NMFS Northeast Fisheries Observer Program Data and Unpublished Dealer Weighout Data from 2006-2010. (see text for criteria). There are 2204.6 pounds in one metric ton</td>
<td>207</td>
</tr>
<tr>
<td>Table 20</td>
<td>Blueback Herring Migration Patterns (SA = Some activity; PA = Peak activity)</td>
<td>209</td>
</tr>
<tr>
<td>Table 21</td>
<td>Alewife Migration Patterns (SA = Some activity; PA = Peak activity)</td>
<td>210</td>
</tr>
<tr>
<td>Table 22</td>
<td>Shad Migration Patterns (SA = Some activity; PA = Peak activity)</td>
<td>212</td>
</tr>
<tr>
<td>Table 23</td>
<td>RH/S Catch Estimates and C.V.S. Midwater trawl starts in 2005.</td>
<td>213</td>
</tr>
<tr>
<td>Table 24</td>
<td>MSB Ports</td>
<td>236</td>
</tr>
<tr>
<td>Table 25</td>
<td>Mackerel DAH Performance, (MT)</td>
<td>240</td>
</tr>
<tr>
<td>Table 26</td>
<td>2010 Total Mackerel Landings, Value, Active Vessels, Trips, and Price</td>
<td>240</td>
</tr>
<tr>
<td>Table 27</td>
<td>Mackerel Landings (MT) by State in 2010.</td>
<td>241</td>
</tr>
<tr>
<td>Table 28</td>
<td>Mackerel Landings (MT) by Month in 2010.</td>
<td>241</td>
</tr>
<tr>
<td>Table 29</td>
<td>Mackerel Landings (MT) by Gear Category in 2010.</td>
<td>242</td>
</tr>
<tr>
<td>Table 30</td>
<td>Mackerel Vessel Permit Holders and Active Permit Holders in 2010 by Homeport State (HPST).</td>
<td>242</td>
</tr>
<tr>
<td>Table 31</td>
<td>Mackerel, Squid, and Butterfish Dealer Permit Holders and Those that Made Mackerel Purchases in 2010 by State.</td>
<td>243</td>
</tr>
<tr>
<td>Table 32</td>
<td>Mackerel Landings by Permit Category for the Period 2001-2010.</td>
<td>244</td>
</tr>
<tr>
<td>Table 33</td>
<td>Statistical Areas from Which 1% or More of Mackerel Were Kept in 2010 According to VTR Reports.</td>
<td>244</td>
</tr>
<tr>
<td>Table 34</td>
<td>Recreational Harvest (rounded to nearest metric ton) of Mackerel by State, 2001-2010.</td>
<td>248</td>
</tr>
<tr>
<td>Table 35</td>
<td>Recreational Harvest (rounded to nearest metric ton) of Mackerel by Mode and Total, 2000-2010.</td>
<td>248</td>
</tr>
<tr>
<td>Table 36</td>
<td>Illex DAH Performance, (MT)</td>
<td>252</td>
</tr>
<tr>
<td>Table 37</td>
<td>Total Landings and Value of Illex During 2010.</td>
<td>253</td>
</tr>
<tr>
<td>Table 38</td>
<td>Illex Landings (MT) by State in 2010.</td>
<td>253</td>
</tr>
<tr>
<td>Table 39</td>
<td>Illex Squid Landings (MT) by Month in 2010.</td>
<td>253</td>
</tr>
</tbody>
</table>
1.2 LIST OF FIGURES

Figure 1. RH/S Mackerel Management Area (would apply in Quarter 1 only) over Quarter 1 MWT effort and RH/S catch ... 72

Figure 2. RH/S Longfin Squid Management Area over small mesh bottom effort and RH/S catch (Quarters 1 and 2) .. 73

Figure 3. RH/S Longfin Squid Management Area over small mesh bottom effort and RH/S catch (Quarters 3 and 4) ... 74

Figure 4. January – February Herring Areas ... 76

Figure 5. March – April Herring Areas ... 77

Figure 6. May – June Herring Areas ... 78

Figure 7. July – August Herring Areas ... 79

Figure 8. September – October Herring Areas ... 80

Figure 9. November – December Herring Areas ... 81

Figure 10. Blueback MWT 2009 ... 147

Figure 11. Blueback MWT 2010 ... 147

Figure 12. Alewife MWT 2009 ... 148

Figure 13. Alewife MWT 2010 ... 148

Figure 14. Blueback SMBT 2009 ... 151

Figure 15. Blueback SMBT 2010 ... 152

Figure 16. Alewife SMBT 2009 ... 153

Figure 17. Alewife SMBT 2010 ... 153

Figure 18. RH/S Mackerel Management Area ... 175

Figure 19. RH/S Longfin Squid Management Area over small mesh bottom effort and RH/S catch (Quarters 1 and 2) .. 176

Figure 20. RH/S Longfin Squid Management Area over small mesh bottom effort and RH/S catch (Quarters 3 and 4) .. 177

Figure 21. January – February Herring Area ... 179

Figure 22. March – April Herring Area ... 180

Figure 23. May – June Herring Area ... 181

Figure 24. July – August Herring Area ... 182

Figure 25. September – October Herring Area ... 183

Figure 26. November – December Herring Area ... 184

Figure 27. Geographic scope of the mackerel, squid and butterfish fisheries. ... 190

Figure 28. 2010 Mackerel TRAC SSB final model output ... 192

Figure 29. Spring NEFSC Survey Mackerel Indices 1968-2011. Geometric Mean, Numbers per Tow ... 193

Figure 30. Spring Survey Mackerel Indices 1968-2011. Geometric Mean, KG per Tow ... 193

Figure 31. Fall NEFSC Trawl Survey - Illex Mean #/tow ... 194

Figure 32. Fall NEFSC Trawl Survey - Illex Mean KG/tow ... 195

Figure 33. 2010 Assessment Figure B6 - Annual Biomass in Relation to the Proposed Biomass Threshold (which is 1/2 of the Target) - Shown here as a Relative Value ... 199

Figure 34. Fall NEFSC Trawl Survey - Longfin Squid Mean KG/tow All Sizes ... 199

Figure 35. Fall NEFSC Trawl Survey - Longfin Squid Mean #/tow Pre-recruits ... 200

Figure 36. Fall NEFSC Trawl Survey - Longfin Squid Mean #/tow Recruits ... 200

Figure 37. Spring NEFSC Trawl Survey - Longfin Squid Mean KG/tow All Sizes ... 201

Figure 38. Spring NEFSC Trawl Survey - Longfin Squid Mean #/tow Pre-recruits ... 202

Figure 39. Spring NEFSC Trawl Survey - Longfin Squid Mean #/tow Recruits ... 202

Figure 40. River Herring Landings ... 216

Figure 41. Shad Landings ... 216

Figure 42. Historical ALT. Mackerel Landings in the U.S. EEZ ... 237

Figure 43. U.S. Mackerel Landings ... 238

Figure 44. U.S. Mackerel Ex-vessel Revenues ... 238

Figure 45. U.S. Mackerel Ex-vessel Revenues ... 238
FIGURE 45. U.S. MACKEREL EX-VESSEL PRICES .. 239
FIGURE 46. UNCANCELED MACKEREL PERMITS PER YEAR ... 243
FIGURE 47. NMFS STATISTICAL AREAS ... 245
FIGURE 48. WORLD PRODUCTION OF MACKEREL, 1950-2008 BASED ON FAO (2010) ... 246
FIGURE 49. HISTORICAL ILLEX LANDINGS IN THE U.S. EEZ ... 249
FIGURE 50. U.S. ILLEX LANDINGS ... 250
FIGURE 51. U.S. ILLEX EX-VESSEL REVENUES ... 250
FIGURE 52. U.S. ILLEX EX-VESSEL PRICES .. 251
FIGURE 53. HISTORICAL BUTTERFISH LANDINGS IN THE U.S. EEZ ... 257
FIGURE 54. U.S. BUTTERFISH LANDINGS .. 258
FIGURE 55. U.S. BUTTERFISH EX-VESSEL REVENUES .. 258
FIGURE 56. U.S. BUTTERFISH EX-VESSEL PRICES .. 259
FIGURE 57. HISTORICAL LONGFIN SQUID LANDINGS IN THE U.S. EEZ .. 265
FIGURE 58. U.S. LONGFIN SQUID LANDINGS .. 266
FIGURE 59. U.S. LONGFIN SQUID EX-VESSEL REVENUES .. 267
FIGURE 60. U.S. LONGFIN SQUID EX-VESSEL PRICES .. 267
FIGURE 61. RH/S MACKEREL MANAGEMENT AREA (WOULD APPLY IN QUARTER 1 ONLY) OVER QUARTER 1 MWT EFFORT AND RH/S CATCH .. 412
FIGURE 62. RH/S LONGFIN SQUID MANAGEMENT AREA OVER SMALL MESH BOTTOM EFFORT AND RH/S CATCH (QUARTERS 1 AND 2) .. 413
FIGURE 63. RH/S LONGFIN SQUID MANAGEMENT AREA OVER SMALL MESH BOTTOM EFFORT AND RH/S CATCH (QUARTERS 3 AND 4) ... 414
FIGURE 64. JANUARY – FEBRUARY HERRING AREA .. 418
FIGURE 65. MARCH – APRIL HERRING AREA .. 419
FIGURE 66. MAY – JUNE HERRING AREA .. 420
FIGURE 67. JULY – AUGUST HERRING AREA .. 421
FIGURE 68. SEPTEMBER – OCTOBER HERRING AREA .. 422
FIGURE 69. NOVEMBER – DECEMBER HERRING AREA ... 423
FIGURE 70. EXAMPLES OF ENVIRONMENTAL SOURCES OF POSITIVE IMPACTS (UP ARROWS) AND NEGATIVE IMPACTS (DOWN ARROWS) FOR THE FIVE VECs. .. 463
2.0 EXECUTIVE SUMMARY

Via this document, the Council is recommending a variety of actions to be implemented by the National Marine Fisheries Service (NMFS), as described below and labeled as “PREFERRED” and surrounded by an "outlining box." The actions labeled as “PREFERRED” were approved to be recommended by the Council to NMFS at the Council’s June 2012 Council meeting. Some actions were considered but were not recommended, and those are described as well. Ultimately NMFS chooses which of the alternatives are appropriate to implement.

This Amendment deals with monitoring and/or controlling all catch of blueback herring, alewife, American shad, and hickory shad in the Atlantic mackerel and longfin squid fisheries. In this document, "river herrings" include blueback herring and alewife. "Shads” include American shad and hickory shad. These four species are described together as "RH/S" and the Amendment addresses three potential RH/S management problems, described below (A,B, and C).

In this document, "catch" refers to all fish caught in a fishery (whether targeted or not and whether retained or discarded). Targeted fish are those intended to be caught. Non-target species are those caught but not targeted. Bycatch usually refers to discards but is a term often used in fishery management to refer to several different things and so it is not used in this document except where unavoidable (for example a report title, quotation, etc.). Instead, fish caught and then discarded at sea are called "discards." Fish that are not targeted but are landed are called "incidentally landed catch." "Incidental permits" allow retention of relatively small amounts of fish/squid.

Considering, and if appropriate, implementing solutions to these potential problems are the purposes of this Amendment. The analytical goals described below summarize the analyses conducted to support decisions for this Amendment.

Problem A: Relatively low levels of catch monitoring have resulted in relatively high uncertainty about the catch of river herrings and shads in ocean intercept fisheries.

Purpose A: "Implement Effective RH/S Catch Monitoring" – Purpose A is to consider alternatives that would implement monitoring programs for the Mackerel, Squid, and Butterfish (MSB) fisheries that are sensitive enough and robust enough to the spatial and temporal variability of RH/S distributions so that good RH/S catch estimates from MSB fishing can be generated. The Magnuson-Stevens Fishery Conservation and Management Act (MSA) requires Councils “to specify the pertinent data which shall be submitted to the Secretary with respect to…fishing…in the fishery” (Section 303(a)(5)) and Section 8 under discretionary fishery management plan provisions allows implementation of observer requirements. Additional monitoring has to fit into an existing monitoring framework and be appropriate for the species and the fishery in order to develop good RH/S estimates in the MSB fisheries, which led to the specific suite of alternatives considered in this document.
Analytical Goals: A1. "RH/S Catch" - Establish the best available information on the catch of RH/S in the MSB and/or other fisheries.

A2. "Effectiveness" - Evaluate how effective various alternatives would be in terms of improving the precision of RH/S catch estimates.

A3. "Practicability" - Evaluate the socioeconomic impacts from the alternatives and the ability of management to implement them.

Problem B: Catch of RH/S in the MSB fisheries may be negatively impacting RH/S populations. While the relative contribution from various causes is unknown (habitat, fishing, predation, etc.), most RH/S stocks are believed to be depleted, with many near historic low points according to the most recent RH/S assessments (see 6.2.5 and 6.2.6).

Purpose B: "Reduce RH/S Catch" – Purpose B is to consider alternatives to reduce catch of RH/S in the MSB fisheries. The MSA requires Councils to minimize discards to the extent practicable (Section 301 – National Standard 9) and provides discretionary authority to “include management measures in the plan to conserve…non-target species…considering the variety of ecological factors affecting fishery populations” (Section 303(b)(12)). Because information on how much RH/S catch might be sustainable is lacking, it is not currently possible to quantify the impact on RH/S stocks of any catch reductions that may occur but any catch reductions would be likely to have a positive impact to some degree.

Analytical Goals: B1. "RH/S Catch" - Evaluate if discards of river herrings and shads in the MSB fisheries has been minimized to the extent practicable (National Standard 9).

B2. "Effectiveness" - Evaluate how effective various alternatives would be in reducing the catch of RH/S.

B3. "Practicability" - Evaluate the socioeconomic impacts from the alternatives and the ability of management to implement them.
Problem C: The overall existing federal/state/regional management framework may be insufficient to adequately conserve RH/S stocks.

Purpose C: "Consider RH/S NS1 Stock Issues" – Purpose C was to consider alternatives that would bring RH/S into the MSB plan as a managed stock in terms of Council management responsibilities, including annual catch limits and accountability measures, in order to improve overall RH/S management and conservation. The Council chose no action for that entire alternative set, and initiated Amendment 15 to consider the issue. Accordingly, the stock in the fishery issue has been moved into the “considered but rejected” section (2.4) and is summarized there. Amendment 15 will allow the Council to fully evaluate the merits of potentially adding RH/S as stocks and fisheries directly managed by the Council.

Alternatives

In this document, each purpose will be referenced by the bolded phrases in quotes above. Each purpose is addressed by one or more related set of alternatives, organized below by each purpose, summarized later in this executive summary, and fully described and analyzed in this document. Throughout this document the reader will note that the focus of the alternatives is on the Atlantic mackerel and longfin squid fisheries. This is intentional because those are the MSB fisheries that appear to have substantial RH/S interactions. The specific alternatives that have been recommended by the Council to NMFS for implementation are marked later in the Executive Summary as "PREFERRED" and have boxes around them.

Alternatives Related to Purpose A: Implement Effective RH/S Catch Monitoring

- **Alternative Set 1: Additional Vessel Reporting Measures**
- **Alternative Set 2: Additional Dealer Reporting Measures**
- **Alternative Set 3: Additional At-Sea Observation Optimization Measures**
- **Alternative Set 4: Port-side and Other Sampling/Monitoring Measures**
- **Alternative Set 5: At-Sea Observer Coverage Requirements**

Alternatives Related to Purpose B: Reduce RH/S Catch

- **Alternative Set 6 : Mortality Caps**
- **Alternative Set 7 : Restrictions in areas of high RH/S catch**
- **Alternative Set 8 : Hotspot Restrictions**

An extremely abbreviated summary of the preferred alternatives to preview section 2.1 ("Summary of the Alternatives and their Impacts") is:
The preferred alternatives would: require weekly VTR reporting for all MSB vessel permits (1c); require a 48-hour pre directed mackerel trip notification (1d48); require VMS and daily VMS catch reporting for mackerel and longfin squid vessels (1eMack, 1eLong, 1fMack, and 1fLong); and require a 6-hour pre-landing notification via VMS for mackerel landings greater than 20,000 pounds (1gMack). The preferred alternatives would also require federal MSB dealers to weigh all landings of mackerel over 20,000 pounds (2d) and longfin squid over 2,500 pounds (2f) or document why they cannot weight landings (2g). (If all fish are not weighed separately, dealers would have to document with each transaction how they estimate the relative composition of mixed catches.) The preferred alternatives would also require for mackerel and longfin-butterfish permits that: reasonable assistance be provided to observers (3b); notice of haul-back or pumping be provided to observers (3c); one observer is provided for each vessel on pair-trawl operations whenever possible (3d). Unless safety, mechanical, or spiny dogfish issues make it inappropriate, the same vessels would not be able to release hauls of fish (“slippage”) prior to observer documentation, and catch affidavits would have to be completed for any pre-observed net release (3j). For mackerel limited access vessels, there would also be a fleet-wide cap of 10 non-emergency (safety, mechanical, spiny dogfish) slippages after which further non-emergency slippages would require a vessel to terminate their trip (3l). The Council also made implementation of additional portside monitoring and catch avoidance based on portside monitoring frameworkable (4f). The Council recommended 100% observer coverage of mid-water trawl (MWT) mackerel trips (5b4) as well as tiered coverage levels for small mesh bottom trawl mackerel trips (100% for Tier 1, 50% for Tier 2, and 25% for Tier 3) (5c4) along with requiring mackerel vessels to pay $325 when they carry observers to help fund the desired coverage levels (5f). Coverage levels would be re-evaluated after 2 years (5h). Since RH/S catch is greatest in the mackerel fishery, and current analysis suggested that area-based could not be determined to be an effective measure, the Council recommended mortality caps for RH/S on the mackerel fishery (6b and 6c) and added future mortality caps and hotspot closures as frameworkable actions (6f and 8b respectively).

Approximate Timeline

- June 1, 2013 – Proposed Rule and FEIS made available for public comment
- Aug 1, 2013 – Comment Period Closes
- Dec 1, 2013 – Final Rule Publishes
- Jan 1, 2014 – Rule Effective
Wording Conventions

All acronyms and abbreviations used in this document should be listed in Section 2.0, List of Acronyms and abbreviations. Several critical wording conventions are noted below.

The Magnuson-Stevens Fishery Conservation and Management Act is the primary law governing marine fisheries management in United States federal waters. The Act was first enacted in 1976 and amended in 1996 and in 2007. In this document, the abbreviation "MSA" refers to the Magnuson-Stevens Fishery Conservation and Management Act as currently amended.

"Mackerel" refers to "Atlantic mackerel." "Am14" refers to "Amendment 14 to the Atlantic Mackerel, Squid, and Butterfish (MSB) Fishery Management Plan (FMP)." "The Council" refers to "the Mid-Atlantic Fishery Management Council." "River herrings" include blueback herring and alewife. "Shads" include American shad and hickory shad. These four species are described together as "RH/S."

In this document, "catch" refers to all fish caught in a fishery (whether targeted or not and whether retained or discarded). Targeted fish are those intended to be caught. Non-target species are those caught but not targeted. Bycatch usually refers to discards but is a term often used in fishery management to refer to several different things and so is not used in this document except where unavoidable (for example a report title, quotation, etc.). Instead, fish caught and then discarded at sea are called "discards." Fish that are not targeted but are landed are called "incidentally landed catch." "Incidental permits" allow retention of relatively small amounts of fish/squid.

Longfin squid have previously been referenced as *Loligo pealeii* or just *Loligo*. There has been a scientific name change for this species from *Loligo pealeii* to *Doryteuthis (Amerigo) pealeii*. To avoid confusion, this document will utilize the common name “longfin squid” wherever possible. Some historical documents will still refer to these squid as “*Loligo.*” All of these names reference the same species, it is just a name change due to improved understanding about the taxonomy (how species are grouped on the basis of shared characteristics) of the species.

The term "mortality cap" refers to a management system whereby directed fishing for one species may be stopped or limited when catch of some other species reaches a pre-set limit. Similar terms include bycatch caps or discard caps.
2.1 SUMMARY OF THE ALTERNATIVES AND THEIR IMPACTS

The alternatives in this document are primarily designed to: 1) consider improving monitoring and observing of river herring and shad (RH/S) catch and 2) consider ways to reduce RH/S catch in the Atlantic mackerel, squid, and butterfish (MSB) fisheries. While there are some potential impacts related to the managed species, habitat, and protected resources, those effects are secondary to the primary goals of Amendment 14. Given the impacts to the managed species, habitat, and protected resources are generally low, indirect, and positive, the textual summary in this Executive Summary focuses on impacts related to non-target species, especially river herrings and shads, and the related fishery business and human community impacts (Socio-Economic impacts). Managed species, habitat, and protected resource impacts are described in Section 7 and summarized in Table 8 later in this Executive Summary. Some alternatives with very similar impacts are grouped together.

In the DEIS, Alternative Set 9 considered whether to add RH/S as stocks in the fishery. Since the Council chose no action for that entire alternative set, and also has begun Amendment 15 to more fully consider the issue, the stock in the fishery issue has been moved into the “considered but rejected” section (2.4) and is summarized there.

Some alternatives have been modified compared to the DEIS. Those modifications are highlighted with double underlines in the Executive Summary and Alternatives Section. An explanation for the modification is included, and the modifications do not create novel alternatives that extend beyond the range, impacts, or intent of alternatives analyzed in the DEIS.

There are about 80 alternatives in this document. This means that there are millions of different possible combinations. At the beginning of each Alternative Set, it is noted which alternatives may, and which alternatives may not be, grouped together within the Alternative Set. Between Alternative Sets, alternatives generally may be combined without problem. The only broad exception to this rule is that it would be unlikely that alternatives from both of the area-based alternatives (Sets 7 and 8) would be chosen together.

To the extent that alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other species, then choosing such alternatives might result in long term additional benefits related to future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). However, due to the uncertainty about how the productivity of RH/S is impacted by current catch levels, it is difficult to quantify such benefits. The amount of benefit to RH/S stocks from any action affecting the MSB fisheries is unknown, so even though one might contemplate what the value of rebuilt RH/S fisheries might be, it is not possible to know if an action in this document might lead rebuilt RH/S fisheries because of the range of issues likely affecting RH/S stocks. One would expect that higher related benefits would result from actions that were more likely to restore RH/S populations. This theme is repeated as appropriate in the Impacts Section (Section 7) and in the rest of this Executive Summary the following sentence is used to reiterate the ideas described in this paragraph rather than repeating the paragraph many
times: "While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1."

The reader will note that more alternatives were selected for the mackerel fishery relative to the longfin squid fishery. This is because, as described in the affected environment section, there appear to be substantially more catches of RH/S in the mackerel fishery compared to the longfin squid fishery.

2.1.1 Alternative Set 1: Additional Vessel Reporting Measures

Background/Statement of Problem/Need for Action:

The current suite of reporting and monitoring requirements may be insufficient to estimate RH/S catch in the mackerel and longfin squid fisheries precisely enough to facilitate effective management goals (such as reducing catch).

The measures in this Alternative Set would (alone and/or in combination with other alternatives) increase vessel reporting and/or monitoring with the overall goal of improving the precision of RH/S catch estimates in the MSB fisheries. While some of the focus may appear to be on mackerel and/or longfin squid general reporting compared to just RH/S in those fisheries, because extrapolations of non-target species are often made based on total landings (including the target species), accurate monitoring of the target species are important for determining encounter rates and total interactions with RH/S. A summary of the key biological and human community impacts (detailed in section 7) follows for each alternative.

NOTE ON COMBINATIONS: Most of the Alternative Set 1 action alternatives could be implemented individually or collectively. However, 1c (weekly VTRs for all MSB permits) would encompass 1bMack and 1bLong so these would not be selected together. The 48-hr mackerel pre-trip notification (1d48) and 72-hr mackerel pre-trip notification (1d72) would also be mutually exclusive – only one would be chosen if either. The VMS reporting alternatives (1f’s and 1g’s) would need the respective 1e’s (that require VMS) for each fishery as a prerequisite before requiring VMS reporting.

1a. No-action

If this alternative is selected, then no measures from Alternative Set 1 would be implemented and the existing reporting measures (as described in section 5.1) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below.

1bMack. Institute weekly vessel trip reporting (VTR) for mackerel permits.

Summary of Biological Impact Analysis

To the degree that more rapid VTR reporting could be used to cross check dealer data to ensure that fishery closures occur appropriately, there could be potentially low positive impacts. Such closures could be related to directed fishery closures or mortality cap closures for non-target species including RH/S.
Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

The number of total mackerel permits can vary from month to month. Of the 1,974 vessels that had mackerel permits in November 2011, 67 did not also have a weekly VTR reporting requirement from another permit (herring or NE multispecies). Thus, about 67 vessels would ultimately be subject to additional reporting requirements because of this measure. Those 67 vessels must currently submit VTR reports monthly. This alternative would result in 40 (52 (weeks) -12 (months) = 40) additional VTR submissions per year for permit holders that don’t currently submit weekly VTRs. This would result in additional mailing costs of $19.36 per year (40 x $ 0.44 postage) per permitted vessel.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

1bLong. Institute weekly vessel trip reporting (VTR) for longfin squid/Butterfish permits.

Summary of Biological Impact Analysis

To the degree that more rapid VTR reporting could be used to cross check dealer data to ensure that fishery closures occur appropriately, there could be potentially low positive impacts. Such closures could be related to directed fishery closures or mortality cap closures for non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

The number of incidental squid/butterfish permits can vary from month to month. Of the 1,891 vessels that had longfin squid//Butterfish Moratorium permits or squid/butterfish incidental permits in November 2011, 74 did not also have a weekly VTR reporting requirement from another permit (herring or NE multispecies). Thus, about 74 vessels would ultimately be subject to additional reporting requirements because of this measure. Those 74 vessels must currently submit VTR reports monthly. This alternative would result in 40 (52 (weeks) -12 (months) = 40) additional VTR submissions per year for permit holders that don’t currently submit weekly VTRs, resulting in additional mailing costs of $19.36 per year (40 x $ 0.44 postage) per permitted vessel. For informational purposes, about 9 of the 351 longfin squid//Butterfish moratorium permits do not currently have a weekly VTR reporting requirement from another permit (herring or NE multispecies).

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
Institute weekly vessel trip reporting (VTR) for all MSB permits (Mackerel, longfin squid/Butterfish, Illex) so as to facilitate quota monitoring (directed landings and/or mortality cap if applicable) and cross checking with other data sources. (PREFERRED)

Summary of Biological Impact Analysis

To the degree that more rapid VTR reporting could be used to cross check dealer data to ensure that fishery closures occur appropriately, there could be potentially low positive impacts. Such closures could be related to directed fishery closures or mortality cap closures for non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

The number of total mackerel permits and the number of squid/butterfish incidental permits can vary from month to month. Of the 2,622 vessels that have MSB permits in November 2011, 121 did not also have a weekly VTR reporting requirement from another permit (herring or NE multispecies). Thus about 121 vessels would ultimately be subject to additional reporting requirements because of this measure. This alternative would result in 40 (52 (weeks) - 12 (months) = 40) additional VTR submissions per year for permit holders that don’t currently submit weekly VTRs, resulting in additional mailing costs of $19.36 per year (40 x $ 0.44 postage) per permit holder. The 121 vessels encompass the same affected vessels from 1bMack and 1bLong above (there is also some overlap between 1bMack and 1bLong).

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1. One specific advantage of this alternative compared to 1b and 1c is that there would be uniformity of reporting in the MSB FMP and other Northeast Region fisheries.

Require 48 hour pre-trip notification to NMFS to retain/possess/transfer more than 20,000 pounds of mackerel so as to facilitate observer placement. (PREFERRED)

This would be used to facilitate observer placement. If vessels did not notify they would not be able to land more than an incidental level of fish (20,000 pounds).

Summary of Biological Impact Analysis

To the degree that better observer data leads to more effective reduction of discards, and to the degree that this alternative leads to better observer data collection, this alternative could lead to positive impacts for non-target species. If a mortality cap on RH/S is implemented, obtaining a complete list of trips to sample becomes very important to ensure that unbiased estimates can be calculated.
Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

This is similar to an initially 72-hour but now 48-hour trip notification requirement in the longfin squid fishery that became effective in 2011 initially and became 48 hours in 2013. Fishermen have reported that the 72-hour notification sometimes means they are unable to target fleeting aggregations of longfin squid because they are not able to put to sea on short notice, especially if they are selected to take an observer.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

Id72. Require 72 hour pre-trip notification to NMFS to retain/possess/transfer more than 20,000 pounds of mackerel so as to facilitate observer placement.

This would be used to facilitate observer placement. If vessels did not notify they would not be able to land more than incidental level of fish (20,000 pounds).

Summary of Biological Impact Analysis

To the degree that better observer data leads to more effective reduction of discards, and to the degree that this alternative leads to better observer data collection, this alternative could lead to positive impacts for non-target species. If a mortality cap on RH/S is implemented, obtaining a complete list of trips to sample becomes very important to ensure that unbiased estimates can be calculated.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

This is similar to an initially 72-hour but now 48-hour trip notification requirement in the longfin squid fishery that became effective in 2011 initially and became 48 hours in 2013. Fishermen have reported that the 72-hour notification sometimes means they are unable to target fleeting aggregations of longfin squid because they are not able to put to sea on short notice, especially if they are selected to take an observer.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
1eMack. Require VMS for limited access mackerel vessels. (PREFERRED)

Vessel Monitoring Systems are currently utilized in many New England fisheries. They are generally used to facilitate compliance and enforcement of area-based management measures as well as catch monitoring by means of a satellite connection between shore and a fixed electronic unit installed on vessels.

Summary of Biological Impact Analysis

If area-based management alternatives are eventually selected for purposes of reducing catch of RH/S, VMS can be a useful tool for compliance/enforcement of area-based management. If port-side sampling requirements are eventually selected for purposes of monitoring landings of RH/S, VMS could also be used for compliance/enforcement if catch reporting via VMS is also required (see 1fMack and 1gMack below). Having VMS is a prerequisite for VMS catch reporting as well (see related alternatives below).

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Of the approximately 2,200 vessels that had open access mackerel permits at some point in 2011, 684 were not also required to have VMS. While not all of these vessels will qualify for mackerel limited access (being implemented currently), 684 would be an upper bound on how many vessels could have to buy new VMS units. Amendment 11 estimated that around 400 vessels might qualify for limited access. If one maintains the ratio of open access boats (684/2,200 = 31%) that would need VMS for the 400 likely qualifiers for mackerel limited access, 31% of 400 equals 124 vessels that would actually need new VMS units. Since limited access qualifiers, being more active participants, may be more likely to have other permits that require VMS, the likely range is from somewhat lower than 124 up to 684. Until the final number of qualifiers is determined it is not possible to further quantify the number of vessels that may require VMS units under this provision. The costs to equip a vessel with a VMS are approximately $1,700-$3,300, with operating costs for the unit of approximately $40-$100 per month. In addition, the vessel would need a constant power source such as a generator, or access to dockside energy, which would add to the costs.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
1eLong. Require VMS for longfin squid/butterfish moratorium vessels (see 1f and 1g below). (PREFERRED)

Vessel Monitoring Systems are currently utilized in many New England fisheries. They are generally used to facilitate compliance and enforcement of area-based management measures as well as catch monitoring by means of a satellite connection between shore and a fixed electronic unit installed on vessels.

Summary of Biological Impact Analysis

If area-based management alternatives are eventually selected for purposes of reducing catch of RH/S, VMS can be a useful tool for compliance/enforcement of area-based management. If port-side sampling requirements are eventually selected for purposes of monitoring landings of RH/S, VMS could also be used for compliance/enforcement if catch reporting via VMS is also required (see 1fLong and 1gLong below). Having VMS is a prerequisite for VMS catch reporting as well (see related alternatives below).

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Of the 351 vessels that had longfin squid/butterfish moratorium permits in 2011, 7 were not also required to have VMS because of other permits and would have to equip their vessel with VMS under this provision. The costs to equip a vessel with a VMS are approximately $1,700-$3,300, with operating costs for the unit of approximately $40-$100 per month. In addition, the vessel would need a constant power source such as a generator, or access to dockside energy, which would add to the costs.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

1fMack. Require daily VMS reporting of catch by limited access mackerel vessels so as to facilitate monitoring (directed and/or unintentional catch) and cross checking with other data sources. Requiring VMS (see 1eMack above) and requiring trip declarations (would be a prerequisite for this alternative. (PREFERRED)

Summary of Biological Impact Analysis

If area-based management alternatives are eventually selected for purposes of reducing catch of RH/S, VMS catch reporting can be a useful tool for compliance/enforcement of area-based management. In high-volume fisheries like MSB, daily reporting of catch can also assist in the effective and timely execution of fisheries closures.
Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

This alternative could only be selected if 1eMack was also selected. VMS costs are discussed under the 1eMack alternative. The cost of transmitting a catch report via VMS is $0.60 per transmission.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

1fLong. Require daily VMS reporting of catch by longfin squid moratorium permits so as to facilitate monitoring (directed and/or unintended catch) and cross checking with other data sources. Requiring VMS (see 1eLong above) and requiring trip declarations would be a prerequisite for this alternative. (PREFERRED)

Summary of Biological Impact Analysis

If area-based management alternatives are eventually selected for purposes of reducing catch of RH/S, VMS catch reporting can be a useful tool for compliance/enforcement of area-based management. In high-volume fisheries like MSB, daily reporting of catch can also assist in the effective and timely execution of fishery closures.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

This alternative could only be selected if 1eLong was also selected. VMS costs are discussed under the 1eLong alternative. The cost of transmitting a catch report via VMS is $0.60 per transmission.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
1gMack. Require 6 hour pre-landing notification via VMS to land more than 20,000 pounds of mackerel, which could facilitate quota monitoring, enforcement, and/or portside monitoring. (PREFERRED)

This would be used to facilitate catch monitoring (directed or unintended catch), cross checking with other data sources, and portside monitoring (if applicable).

Summary of Biological Impact Analysis

Pre-landing notifications could facilitate enforcement of landings limits, proper landings reporting, and port-side monitoring.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

This alternative could only be selected if 1eMack was also selected. VMS costs are discussed under the 1eMack alternative. The cost of transmitting a catch report via VMS is $0.60 per transmission.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

1gLong. Require 6 hour pre-landing notification via VMS to land more than 2,500 pounds of longfin squid, which could facilitate quota monitoring, enforcement, and/or portside monitoring.

This would be used to facilitate catch monitoring (directed or unintended catch), cross checking with other data sources, and portside monitoring (if applicable).

Summary of Biological Impact Analysis

Pre-landing notifications could facilitate enforcement of landings limits, proper landings reporting, and port-side monitoring.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

This alternative could only be selected if 1eLong was also selected. VMS costs are discussed under the 1eLong alternative. The cost of transmitting a catch report via VMS is $0.60 per transmission.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
2.1.2 **Alternative Set 2 – Additional Dealer Reporting Measures**

Background/Statement of Problem/Need for Action:

The current suite of reporting and monitoring requirements may be insufficient to precisely estimate RH/S catch. Also, practices on how landing weights are determined are not standardized.

The measures in this Alternative Set would (alone and/or in combination with other alternatives) increase reporting and/or monitoring with the overall goal of improving the precision of RH/S catch estimates. While some of the focus may appear to be on mackerel and/or longfin squid general reporting compared to just RH/S in those fisheries, because extrapolations are often made based on total landings, accurate monitoring of the target species can be as important as determining the encounter rates of RH/S. A summary of the key biological and human community impacts (detailed in section 7) follows for each alternative.

NOTE ON COMBINATIONS: Most of the Alternative Set 2 action alternatives could be implemented individually or collectively. However, 2c and 2d (weighing mackerel) would be mutually exclusive – only one would be chosen if either. Likewise, 2e and 2f (weighing longfin squid) would be mutually exclusive – only one would be chosen if either. 2g (dealers can use volume to weight conversions) would modify 2c, 2d, 2e, or 2f so 2g could only be chosen if at least one of those four alternatives was also chosen.

2a. No-action

If this alternative is selected, then no measures from Alternative Set 2 would be implemented and the existing reporting measures (as described in section 5.2) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below.

2b. Require federally permitted MSB dealers to obtain vessel representative confirmation of Standard Atlantic Fisheries Information System transaction records for mackerel landings over 20,000 lb, *Illex* landings over 10,000 lb, and longfin squid landings over 2,500 lb.

This would be accomplished by vessels via Fish Online, an existing internet-based program that currently allows vessels to voluntarily check their landings records. Dealers would have to confirm with vessels that a vessel representative had checked Fish Online to confirm landings.

Summary of Biological Impact Analysis

Accurate landings data is important to ensure that quotas are not exceeded and for accurate stock assessments. To the extent that landings data informs mortality caps, accurate landings data can also be important for managing catch of non-target species including RH/S.
Summary of Socio-Economic Impact Analysis

Since internet access is pervasive in the Mid-Atlantic and New England, either vessel owners or their representative should be able to make an internet-based confirmation of dealer transactions records without substantial cost. Improving records could benefit fishermen if additional qualifications are ever considered for holding MSB permits.

2c. Require that federally permitted MSB dealers weigh all landings related to mackerel transactions over 20,000 pounds. If dealers do not sort by species, they would need to document in dealer applications how they estimate relative compositions of a mixed catch.

Summary of Biological Impact Analysis

Accurate landings data is important to ensure that directed fishery quotas are not exceeded and for accurate stock assessments. To the extent that directed landings informs mortality caps (often substantially), accurate directed landings data can be important for managing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Economic impacts would likely be varied among dealers. Some dealers currently weigh all landings in some manner and impacts for them would be low. Other dealers use volume to weight conversions and could have to purchase scales. Purchasing a truck or hopper scale can range up to $100,000 per installation or $50,000 per installation respectively while smaller scales could be bought for several hundred dollars with a wide range in between. Smaller scales could slow down processing however.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
2d. Require that federally permitted MSB dealers weigh all landings related to mackerel transactions over 20,000 pounds. If dealers do not sort by species, they would need to document with each transaction how they estimated the relative composition of a mixed catch. (PREFERRED)

Summary of Biological Impact Analysis

Accurate landings data is important to ensure that directed fishery quotas are not exceeded and for accurate stock assessments. To the extent that directed landings informs mortality caps (often substantially), accurate directed landings data can be important for managing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Economic impacts would likely be varied among dealers. Some dealers currently weigh all landings in some manner and impacts for them would be low. Other dealers use volume to weight conversions and could have to purchase scales. Purchasing a truck or hopper scale can range up to $100,000 per installation or $50,000 per installation respectively while smaller scales could be bought for several hundred dollars with a wide range in between. Smaller scales could slow down processing however.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

2e. Require that federally permitted MSB dealers weigh all landings related to longfin squid transactions over 2,500 pounds. If dealers do not sort by species, they would need to document in dealer applications how they estimate relative compositions of a mixed catch.

Summary of Biological Impact Analysis

Accurate landings data is important to ensure that directed fishery quotas are not exceeded and for accurate stock assessments. To the extent that directed landings informs mortality caps (often substantially), accurate directed landings data can be important for managing catch of non-target species including RH/S.
Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Economic impacts would likely be varied among dealers. Some dealers currently weigh all landings in some manner and impacts for them would be low. Other dealers use volume to weight conversions and could have to purchase scales. Purchasing a truck or hopper scale can range up to $100,000 per installation or $50,000 per installation respectively while smaller scales could be bought for several hundred dollars with a wide range in between. Smaller scales could slow down processing however.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

Summary of Biological Impact Analysis

Accurate landings data is important to ensure that directed fishery quotas are not exceeded and for accurate stock assessments. To the extent that directed landings informs mortality caps (often substantially), accurate directed landings data can be important for managing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Economic impacts would likely be varied among dealers. Some dealers currently weigh all landings in some manner and impacts for them would be low. Other dealers use volume to weight conversions and could have to purchase scales. Purchasing a truck or hopper scale can range up to $100,000 per installation or $50,000 per installation respectively while smaller scales could be bought for several hundred dollars with a wide range in between. Smaller scales could slow down processing however.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
2g. Related to preferred requirements to weigh all fish (2d, 2f), allow dealers to use volume to weight conversions if they cannot weigh landings – they would need to identify their conversion methods in their dealer application and explain why they cannot weigh all landings. (PREFERRED)

Summary of Biological Impact Analysis

Accurate landings data is important to ensure that directed fishery quotas are not exceeded and for accurate stock assessments. To the extent that directed landings informs mortality caps (often substantially), accurate directed landings data can be important for managing catch of non-target species including RH/S. Volume to weight conversions may not be as accurate as simple weighing and this option could essentially make 2c-2f equivalent to the status quo (except for the documentation provision) because dealers would no longer have a requirement to weigh all landings.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact. This alternative would only be selected if 2c-2f were chosen. Determining volume to weight ratios would be less expensive than purchasing scales for those dealers that would need to do this, so compared to if 2c-2f were chosen alone, impacts would be expected to be positive for those dealers. However to the extent that not getting accurate measurements interferes with sustainable management, there could be long-term negative impacts on managed and/or non-target species compared to if just 2d and 2f (the relevant preferred alternatives) were implemented.
2.1.3 Alternative Set 3: Additional At-Sea Observation Optimization Measures

Background/Statement of Problem/Need for Action:

The current suite of observer monitoring requirements may be insufficient to precisely estimate RH/S catch.

The measures in this Alternative Set would (alone and/or in combination with other alternatives) facilitate more accurate monitoring by observers with the overall goal of improving the precision of RH/S catch estimates. Each alternative addresses an aspect of observer coverage that potentially could be improved to ultimately lead to better RH/S estimates. A summary of the key biological and human community impacts (detailed in section 7) follows for each alternative.

NOTE ON COMBINATIONS: Many of the Alternative Set 3 action alternatives could be implemented individually or collectively. However, 3h (trip termination after 1 slipped haul) and 3i (trip termination after 2 slipped hauls) would be mutually exclusive – only one would be chosen if either. Likewise, 3k (fishery-wide slippage cap at 5 mackerel slippage events) and 3l (fishery-wide slippage cap at 10 mackerel slippage events) would be mutually exclusive – only one would be chosen if either. 3m (fishery-wide slippage cap at 5 longfin slippage events) and 3n (fishery-wide slippage cap at 10 longfin slippage events) are also mutually exclusive – only one would be chosen if either. 3p would replace fishery-wide slippage caps with vessel slippage caps and it would be expected that either 3p could be chosen or 3k-3n could be chosen (if any). Also, if 3j (slippage prohibition with exceptions) was chosen then 3f or 3g could not be selected (3f and 3g require all catch to be brought aboard but 3j provides some exceptions).

If alternatives 3f – 3p are selected for mackerel, they would also require the selection of Alternative 1d48 (48-hr pre-trip notification) or 1d72 (72-hr pre-trip notification). There is already a pre-trip notification requirement in effect for longfin squid moratorium permit holders.

3a. No-action

If this alternative is selected, then no measures from Alternative Set 3 would be implemented and the existing monitoring measures (as described in section 5.3) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below.
3b. Require the following reasonable assistance measures: provision of a safe sampling station; help with measuring decks, codends, and holding bins; help with fish collection; and help with basket sample collection by crew on vessels with mackerel limited access and/or longfin squid/Butterfish moratorium permits. Requirements can be modified via the annual specifications process.
(PREFERRED)

The double underlined section is a slight modification from the original alternative in the DEIS and clarifies that the requirements may be modified through the annual specifications process.

Summary of Biological Impact Analysis

Such assistance could help improve observer data by allowing the observer to focus on technical aspects of observing such as species identification, weighing, measuring, etc. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Most vessels do most of these things already so impacts would be low.

Summary of Socio-Economic Impact Analysis

Impacts should be negligible as most vessels provide such assistance voluntarily.

3c. Require vessel operators to provide observers notice when pumping/haul-back occurs on vessels with mackerel limited access and/or longfin squid moratorium permits. Requirements can be modified via the annual specifications process.
(PREFERRED)

The double underlined section is a slight modification from the original alternative in the DEIS and clarifies that the requirements may be modified through the annual specifications process.

Summary of Biological Impact Analysis

Such notification could help improve observer data by making sure the observer is aware of all sampling opportunities. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Most vessels do most of these things already so impacts would be low.

Summary of Socio-Economic Impact Analysis

Impacts should be negligible as most vessels provide such assistance voluntarily.
3d. When observers are deployed on trips involving more than one vessel, observers would be required on any vessel taking on fish wherever/whenever possible on vessels with mackerel limited access and/or longfin squid moratorium permits. Requirements can be modified via the annual specifications process.

(PREFERRED)

The double underlined section is a slight modification from the original alternative in the DEIS and clarifies that the requirements may be modified through the annual specifications process.

Summary of Biological Impact Analysis

If vessels are working in pairs conducting pair trawling or other types of fishing (e.g. using purse seines or carrier vessels) where both vessels are receiving fish, having observers on both vessels ensures that all catch from the pair trawling trip is observed. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. The observer program usually does this already so impacts would be low.

Summary of Socio-Economic Impact Analysis

This is generally occurring already (pers com Amy VanAtten). To the extent that it is not, NMFS would have to spend additional funds on observers, or if industry funding is approved in this amendment pair-trawl vessels would always have to arrange for two observers.

3e. On vessels with mackerel limited access and/or longfin squid moratorium permits, require slippage reports - “Released Catch Affidavits” from captains on observed trips if they slip a haul.

Slippage is an important concept in this amendment and is defined as:

Unobserved catch, i.e., catch that is discarded prior to being observed, sorted, sampled, and/or brought on board the fishing vessel. Slippage can include the release of fish from a codend or seine prior to completion of pumping or the release of an entire catch or bag while the catch is still in the water.

- Fish that cannot be pumped and that remain in the net at the end of pumping operations are considered to be operational discards and not slipped catch. Observer protocols include documenting fish that remain in the net in a discard log before they are released, and existing regulations require vessel operators to assist the observer in this process. Management measures are under consideration in this amendment to address this issue and improve the observers’ ability to inspect nets after pumping to document operational discards.

- Discards that occur at-sea after catch brought on board and sorted are also not considered slipped catch.
Summary of Biological Impact Analysis

This alternative would be used to improve the quality of data collected by observers by developing a better understanding of slippage events. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since there no direct incentive not to slip impacts should be low. If a “trip termination because of slippage” alternative was selected (see below), the slippage reports could also be used by enforcement to determine if vessels had terminated appropriately after reaching the trigger number of slippage events.

Summary of Socio-Economic Impact Analysis

Minimal impacts would be expected. Vessel captains would have to fill out a form explaining the reason for any slipped hauls.

3f. Prohibit vessels with Mackerel limited access permits that have notified for a mackerel trip and are carrying an observer from releasing any discards before they have been brought aboard for sampling by the observer.

Summary of Biological Impact Analysis

If vessels being observed can release catch without it being recorded, observer data will be biased. Avoiding such events would improve the observer data and any analysis or management measures that depend on observer data, including reducing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Some fishing time may be lost because nets have to be fully brought aboard after each haul. Also, this alternative could create safety problems if a vessel attempts to bring aboard a catch and/or net in dangerous conditions. The observer program reports that most vessels are already doing this a majority of the time on a voluntary basis (pers com Amy VanAtten).

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
3g. Prohibit vessels with longfin squid moratorium permits that have notified for a longfin squid trip and are carrying an observer from releasing any discards before they have been brought aboard for sampling by the observer.

Summary of Biological Impact Analysis

If vessels being observed can release catch without it being recorded, observer data will be biased. Avoiding such events would improve the observer data and any analysis or management measures that depend on observer data, including reducing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Some fishing time may be lost because nets have to be fully brought aboard after each haul. Also, this alternative could create safety problems if a vessel attempts to bring aboard a catch and/or net in dangerous conditions. The observer program reports that most vessels are already doing this a majority of the time on a voluntary basis.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

3h. On vessels with mackerel limited access and/or longfin squid moratorium permits, require trip termination following 1 slipped haul on an observed trip so as to minimize slippage events.

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip any hauls on an observed trip so that data can be obtained on the composition of all catches. It would apply to vessels that had notified for a mackerel or longfin squid trip.

Summary of Biological Impact Analysis

If vessels being observed can release catch without it being recorded, observer data will be biased. Avoiding such events would improve the observer data and any analysis or management measures that depend on observer data, including reducing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

It is difficult to predict the socio-economic impacts because participants are likely to have a wide variety of responses. Some vessels may just not slip where they would have previously, and the only extra cost is sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be
reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Because of the impossibility of predicting fishery participant responses, the diversity of trips types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify revenue impacts related to this alternative.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

Section 3i. On vessels with mackerel limited access and/or longfin squid moratorium permits, require trip termination following 2 slipped hauls on an observed trip so as to minimize slippage events.

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip 2 hauls on an observed trip so that data can be obtained on the composition of all catches. It would apply to vessels that had notified for a mackerel or longfin squid trip.

Summary of Biological Impact Analysis

If vessels being observed can release catch without it being recorded, observer data will be biased. Avoiding such events would improve the observer data and any analysis or management measures that depend on observer data, including reducing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

It is difficult to predict the socio-economic impacts because participants are likely to have a wide variety of responses. Some vessels may just not slip where they would have previously, and the only extra cost is sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Because of the impossibility of predicting fishery participant responses, the diversity of trips types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify revenue impacts related to this alternative. Negative socioeconomic impacts would presumably be less than with 3h where just a single slippage event causes a trip termination.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
3j. With the exceptions noted below, mackerel limited access and/or longfin squid moratorium permitted vessels that have notified the observer program of their intent to land over 2,500 pounds of longfin squid or over 20,000 pounds of mackerel and have been selected to carry an observer would be required to pump/haul aboard all fish from the net for inspection and sampling by the observer. Vessels that do not pump fish would be required to bring all fish aboard the vessel for inspection and sampling by the observer. Vessels would be prohibited from releasing fish from the net (slippage), transferring fish to another vessel (that is not carrying a NMFS-approved observer), or otherwise discarding fish at sea, unless the fish have first been brought aboard the vessel and made available for sampling and inspection by the observer.

Exceptions: 1) pumping the catch could compromise the safety of the vessel/crew 2) mechanical failure precludes bringing some or all of the catch aboard the vessel; or 3) spiny dogfish have clogged the pump and consequently prevent pumping of the rest of the catch.

If a net is released, including the exemptions above, the vessel operator would be required to complete and sign a Released Catch Affidavit providing information about where, when, and why the net was released, as well as a good-faith estimate of the total weight of fish caught on the tow and weight of fish released. Released Catch Affidavits must be submitted within 48 hours of completion of the trip.

Exemptions and provisions of this measure can be modified via the annual specifications process.

The double underlined section is a slight modification from the original alternative in the DEIS and clarifies that the exemptions and provisions of this requirement may be modified through the annual specifications process.

Summary of Biological Impact Analysis

If vessels being observed can release catch without it being recorded, observer data will be biased. Avoiding such events would improve the observer data and any analysis or management measures that depend on observer data, including reducing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Vessel captains would have to fill out a form explaining the reason for any slipped hauls. Since there are no termination provisions in this particular alternative, there should be negligible impacts.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
3k. Related to 3j, for mackerel limited access permitted vessels, NMFS would track the number of slippage events. Once a cap of 5 slippage events (adjustable via specifications) occur in any given year for notified and observed mackerel trips then subsequent slippage events on any notified and observed Mackerel trip would result in trip termination fleet-wide for the rest of that year. The goal is to minimize slippage events.

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip a haul once 5 slippage events have occurred overall in a year by vessels declaring mackerel trips. The goal is to minimize unnecessary slippage events.

Summary of Biological Impact Analysis

If vessels being observed can release catch without it being recorded, observer data will be biased. Avoiding such events would improve the observer data and any analysis or management measures that depend on observer data, including reducing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

It is difficult to predict the socio-economic impacts because participants are likely to have a wide variety of responses. If less than 5 slippage events occur the impacts may be negligible. Once terminations are triggered, some vessels may just not slip where they would have previously, and the only extra cost is sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Because of the impossibility of predicting fishery participant responses, the variety of trip types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify socio-economic impacts related to this alternative.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
3l. Related to 3j, for mackerel limited access permitted vessels, NMFS would track the number of slippage events. Once a cap of 10 slippage events (adjustable via specifications) occur in any given year for notified and observed mackerel trips then subsequent slippage events on any notified and observed Mackerel trip would result in trip termination fleet-wide for the rest of that year. The goal is to minimize slippage events. The only slippages that would count against the cap are non-emergency events, so the exceptions 1, 2, and 3 in 3j would not count against the slippage cap. Operational discards (small quantities of fish that remain in the net) that are made available to the observer for visual access prior to discarding would also not count against the slippage cap. Requirements and provisions of the measure can be modified via the annual specifications process.

(PREFERRED)

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip a haul once 10 non-exempt slippage events have occurred overall in a year by vessels declaring mackerel trips. The goal is to minimize unnecessary slippage events. The double underlined section is a minor modification from the original alternative in the DEIS and clarifies what kind of slippage events would count against the cap and allows the requirements and provisions of the cap to be modifiable via the annual specifications process.

Summary of Biological Impact Analysis

If vessels being observed can release catch without it being recorded, observer data will be biased. Avoiding such events would improve the observer data and any analysis or management measures that depend on observer data, including reducing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

It is difficult to predict the socio-economic impacts because participants are likely to have a wide variety of responses. If less than 10 slippage events occur the impacts may be negligible. Once terminations are triggered, some vessels may just not slip where they would have previously, and the only extra cost is sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Because of the impossibility of predicting fishery participant responses, the variety of trip types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify socio-economic impacts related to this alternative. Negative socioeconomic impacts would presumably be less than with 3k where 5 slippage events triggers trip terminations upon additional slippages.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
3m. Related to 3j, for longfin squid moratorium permitted vessels, NMFS would track the number of slippage events. Once a cap of 5 slippage events (adjustable via specifications) occur in any given trimester for notified and observed longfin squid trips then subsequent slippage events on any notified and observed longfin squid trip would result in trip termination for the rest of that trimester. The goal is to minimize slippage events.

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip a haul once 5 slippage events have occurred overall in a trimester by vessels declaring longfin squid trips. The goal is to minimize unnecessary slippage events.

Summary of Biological Impact Analysis

If vessels being observed can release catch without it being recorded, observer data will be biased. Avoiding such events would improve the observer data and any analysis or management measures that depend on observer data, including reducing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

It is difficult to predict the socio-economic impacts because participants are likely to have a wide variety of responses. If less than 5 slippage events occur per trimester the impacts may be negligible. Once terminations are triggered, some vessels may just not slip where they would have previously, and the only extra cost is sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Because of the impossibility of predicting fishery participant responses, the variety of trip types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify socio-economic impacts related to this alternative.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
3n. Related to 3j, for longfin squid moratorium permitted vessels, NMFS would track the number of slippage events. Once a cap of 10 slippage events (adjustable via specifications) occur in any given trimester for notified and observed longfin squid trips then subsequent slippage events on any notified and observed longfin squid trip would result in trip termination for the rest of that trimester. The goal is to minimize slippage events.

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip a haul once 10 slippage events have occurred overall in a trimester by vessels declaring longfin squid trips. The goal is to minimize unnecessary slippage events.

Summary of Biological Impact Analysis

If vessels being observed can release catch without it being recorded, observer data will be biased. Avoiding such events would improve the observer data and any analysis or management measures that depend on observer data, including reducing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

It is difficult to predict the socio-economic impacts because participants are likely to have a wide variety of responses. If less than 10 slippage events occur per trimester the impacts may be negligible. Once terminations are triggered, some vessels may just not slip where they would have previously, and the only extra cost is sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Because of the impossibility of predicting fishery participant responses, the variety of trip types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify socio-economic impacts related to this alternative. Negative socioeconomic impacts would presumably be less than with 3m where 5 slippage events per trimester triggers trip terminations upon additional slippages.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
3o. For mackerel and/or longfin squid permitted vessels, if a trip is terminated within 24 hours because of any of the anti-slippage provisions (3g, 3h, 3k-3n), then the relevant vessel would have to take an observer on its next trip.

This would reduce a vessel’s incentive to slip a haul early in a trip in order to cause a trip termination and thereby avoid having an observer on board for an extended trip.

Summary of Biological Impact Analysis

This alternative would seek to discourage observer avoidance strategies so that data can be obtained on the composition of typical trips. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Vessels may experience reduced revenue and/or higher costs due to waiting for another observer or due to paying for another observer if an industry-funded observer program is in place.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

3p. Allow mackerel and/or longfin squid permitted vessels to be assigned an annual quota (set during specifications) of slippage events related to 3j, specified annually. Once their slippage quota was reached, vessels would have to terminate an observed trip as well as upon any slippage event on subsequent observed trips for the remainder of the calendar year.

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip a haul once a certain number of slippage events have occurred annually by that same vessel. While this is more intensive to track (by vessel versus by fleet), the advantage is that one vessel is not penalized for another vessel’s slippage event.
Summary of Biological Impact Analysis

If vessels being observed can release catch without it being recorded, observer data will be biased. Avoiding such events would improve the observer data and any analysis or management measures that depend on observer data, including reducing catch of non-target species including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

This alternative would allow the Council to consider implementing slippage triggers for trip termination upon additional slippage events at the individual vessel level. The advantage of having the slippage quota be vessel based is that vessels have a direct incentive to minimize unnecessary slippage events to save their slippage quota for when they really need it (e.g. due to safety issues) and thereby avoid situations where subsequent slippage events result in forced trip terminations. Trip terminations could still occur however.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

THIS SPACE INTENTIONALLY LEFT BLANK
2.1.4 Alternative Set 4 - Port-side and Other Sampling/Monitoring Measures

Background/Statement of Problem/Need for Action:

The current suite of reporting and monitoring requirements are insufficient to precisely estimate RH/S catch.

The measures in this Alternative Set would (alone and/or in combination with other alternatives) increase reporting and/or monitoring with the overall goal of improving the precision of RH/S catch estimates.

From a practical standpoint, it is more efficient to subsample the landings of river herring and other non-target species when a mackerel vessel reaches the dock than when it is at sea. Discards that occur at sea of non-target species are easier to monitor than are the landed fractions that go into the hold due to the large volumes that go into the hold. Dockside sampling could have higher sampling rates to better characterize the species in retained catch and an entire catch could be evaluated in one day or less as opposed to having a person at sea for multiple days. This option does not mean that at sea monitors are unnecessary – they are essential to monitor discards. However, since most RH/S are retained (esp. for mackerel trips), portside sampling could increase sampling coverage from current levels with lower costs than at-sea observers. For longfin squid trips the preceding discussion probably does not apply because most RH/S are discarded so they are not available dockside.

Several other sampling/monitoring alternatives are also included in the Alternative Set as described below including alternatives to require volumetric hold certification of Tier 3 mackerel limited access permits and longfin squid moratorium permit holders. While in Amendment 11 the fish hold certification was primarily for purposes of capacity control (not allowing vessels to reconfigure to have substantially larger fish holds), in this Amendment the measure is being considered for purposes of facilitating rapid catch weight estimates based on vessel volume for portside sampling, observer data hail weight estimates, and vessels’ VTR kept-weight estimates. There is also an ongoing voluntary project by industry to use fleet communication to avoid river herring hotspots. Since this project uses extensive post-side sampling it was included in this Alternative Set – the relevant alternative in this document just commits the Council to consider the project’s results once completed to determine potential management implications. A summary of the key biological and human community impacts (detailed in section 7) follows for each alternative.

NOTE ON COMBINATIONS: All of the action alternatives in this Alternative Set could be implemented singly or in combination with any other alternative(s) in this Alternative Set.
4a. No-action

If this alternative is selected, then no measures from Alternative Set 4 would be implemented and the existing monitoring measures (as described in section 5.4) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below.

4b. Require industry-funded 3rd party port-side landings sampling program (including total weight documentation) for mackerel landings over 20,000 pounds. Required coverage levels would be specified annually during specifications. NEFSC would accredit samplers and manage the program/data. Vessels would contract directly with providers and pay providers directly. If selected, vessels would have to wait until their sampler arrived unless a waiver is obtained from the observer program.

Summary of Biological Impact Analysis

To the degree that better incidental landings data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Non-target species would also benefit if the costs of monitoring generally discouraged effort which would reduce interactions.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Dockside monitors for groundfish cost $50-$70/hr and each trip would only require 1 sampling event compared to the $800/day of at-sea samplers (plus $400 in administrative costs). Different sized vessels would have different costs for offload monitoring due to different hold sizes and processor offload speeds, but a 6-14 hour offload from a 3-5 day trip would costs $300-$980 for dockside monitoring versus $3,600-$6,000 for observer costs. If the Council required 25%, 50%, 75%, or 100% of trips to be monitored then participants would have to pay for approximately that percentage of their trips to be monitored unless additional funds are available. Revenue information for different mackerel vessels/trips is available in Alternative Set 5 below.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
4c. Require industry-funded 3rd party port-side landings sampling program (including total weight documentation) for longfin squid landings over 2,500 pounds. Required coverage levels would be specified annually during specifications. NEFSC would accredit samplers and manage the program/data. Vessels would contract directly with providers and pay provider directly. If selected, vessels would have to wait until their sampler arrived unless a waiver is obtained from the observer program.

Summary of Biological Impact Analysis

To the degree that better incidental landings data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. However, since most RH/S caught on longfin squid trips are discarded rather than retained, portside sampling is probably would not be an effective way to obtain RH/S catch information. Non-target species would benefit if the costs of monitoring generally discouraged effort which would reduce interactions.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Dockside monitors for groundfish cost $50-$70/hr and each trip would only require 1 sampling event compared to the $800/day of at-sea samplers (plus $400 in administrative costs). Different sized vessels would have different costs for offload monitoring due to different hold sizes and processor offload speeds, but a 6-14 hour offload from a 3-5 day trip would costs $300-$980 for dockside monitoring versus $3,600-$6,000 for observer costs. If the Council required 25%, 50%, 75%, or 100% of trips to be monitored then participants would have to pay for approximately that percentage of their trips to be monitored unless additional funds are available. Revenue information for different mackerel vessels/trips is available in Alternative Set 5.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

4d. Require volumetric vessel-hold certification for Tier 3 limited access mackerel permits and specify a volume to weight conversion.

Summary of Biological Impact Analysis

This alternative could facilitate rapid catch weight estimates based on vessel volume for portside sampling, observer data hail weight estimates, and vessels’ VTR kept-weight estimates. To the degree that better incidental landings data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S.
Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Informal contacts by council staff with several marine surveyors during the Amendment 11 development process revealed that a fish hold measurement could run approximately $13.30-$40 per foot of vessel length, which could range from as low as $1,000 for a 75 foot vessel to as high as $6,000 for a 150 foot vessel, not including travel expenses. To the extent that surveys are already required for insurance purposes these costs may be already part of a vessels operating costs. Industry members have communicated to Council staff that, while some smaller vessels are configured in a way that could facilitate hold certifications (the refrigerated seawater or “tank” boats), many vessels that participate in a “fresh” product fishery are not configured in a way that facilitates a certification of a fixed hold capacity.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

4e. Require volumetric vessel-hold certification for longfin squid moratorium permits and specify a volume to weight conversion.

Summary of Biological Impact Analysis

This alternative could facilitate rapid catch weight estimates based on vessel volume for portside sampling, observer data hail weight estimates, and vessels’ VTR kept-weight estimates. To the degree that better incidental landings data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

Informal contacts by council staff with several marine surveyors revealed that a fish hold measurement could run approximately $13.30-$40 per foot of vessel length, which could range from as low as $1,000 for a 75 foot vessel to as high as $6,000 for a 150 foot vessel, not including travel expenses. To the extent that surveys are already required for insurance purposes these costs may be already part of a vessels operating costs. Industry members have communicated to Council staff that, while some longfin squid vessels are configured in a way that could facilitate hold certifications (the refrigerated seawater or “tank” boats), many vessels that participate in a “fresh” product fishery are not configured in a way that facilitates a certification of a fixed hold capacity.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
4f. Within 6 months of the completion of the Sustainable Fisheries Coalition RH/S avoidance project (expected late 2013), the Council will meet to formally review the results and consider the appropriateness of developing a framework adjustment to implement any additional catch avoidance strategies that are suggested by the results of the Sustainable Fisheries Coalition avoidance project. (PREFERRED)

This would commit the Council to consider the findings from this project as they could apply to reducing the catch of RH/S in pelagic fisheries. Full details on this project are included in Appendix 7, but generally the project is testing if oceanographic and fishery data can be used to help industry avoid potential RH/S hotspots. Implementing measures similar to this project (i.e. making participation mandatory) would be a frameworkable action.

Summary of Biological Impact Analysis

No immediate impacts would be expected. This would ensure that the Council considers the findings from this project as they could apply to reducing the catch of river herrings and/or shads in pelagic fisheries. Impacts would not be known until completion of the Sustainable Fisheries Coalition avoidance project and alternatives were developed, which would be subsequently analyzed and considered separately.

Summary of Socio-Economic Impact Analysis

No immediate impacts would be expected. There are no costs associated with considering the results of the Sustainable Fisheries Coalition avoidance project. If the project revealed a way for industry to cooperatively and voluntarily avoid RH/S such work could lead to a cost-efficient way to reduce RH/S interactions. Any potential actions would be subsequently analyzed and considered separately.

THIS SPACE INTENTIONALLY LEFT BLANK
2.1.5 Alternative Set 5 – At-Sea Observer Coverage Requirements

Background/Statement of Problem/Need for Action:

The current suite of reporting and monitoring requirements is insufficient to precisely estimate RH/S catch.

The measures in this Alternative Set would (alone and/or in combination with other alternatives) increase reporting and/or monitoring with the overall goal of improving the precision of RH/S catch estimates. The focus of these alternatives is on increasing the observer coverage rates of mackerel and longfin squid trips. Implementation of mandatory coverage would require a trip notification provision to be implemented as well (see Alternative Set 1). NMFS has strongly communicated that the at-sea portion of any additional observer coverage would have to be paid for by industry. A summary of the key biological and human community impacts (detailed in section 7) follows for each alternative.

NOTE ON C.V.s (coefficient of variation): A C.V. of 0.30 means that the true value has approximately a 95% probability of being within ± 60% of the estimate. A C.V. of 0.20 means that the true value has approximately a 95% probability of being within ± 40% of the estimate (both assuming a normal distribution of data). Also, since some sources of uncertainty are not integrated into the C.V. calculations, the C.V.s generated by the science center are lower (look better) than they really are. As described in Section 5, since obtaining a given C.V. can require very different coverage levels from year to year, and the inter-annual variability in the data drives the precision, it may be quite difficult to consistently obtain precise catch estimates via observer data when the coverage levels are determined from prior years’ data (as occurred with the SBRM).

NOTE ON COMBINATIONS: Only one of the 5b (observer coverage for mackerel mid-water trawl) alternatives could be chosen. Likewise, only one of the 5c (observer coverage for mackerel small mesh bottom trawl) and one of the 5d (observer coverage for longfin squid small mesh bottom trawl) alternatives could be chosen. One alternative from each of these could be selected (a total of three). 5e1 and 5e2 (strata-fleet alternatives for mid-water trawl) are mutually exclusive as are 5e3 and 5e4 (strata-fleet alternatives for small mesh bottom trawl) but one alternative from the first pair could be chosen with one from the second pair. If any of the 5e alternatives were chosen, they would not be combinable with any of the 5b, 5c, or 5d alternatives (coverage could be based on a set percentage of trips or a set target coefficients of variation (C.V.s) but not both). 5f, 5g, and 5h provide for industry funding and review of the increased observer coverage levels proposed in 5b-5e so they could be added on to any of the other action alternatives.

If any measure in this Alternative Set is selected for mackerel, the Council would also need to select Alternative 1d48 (48-hr pre-trip notification) or 1d72 (72-hr pre-trip notification). There is already a pre-trip notification requirement in effect for longfin squid moratorium permit holders.
5a. No-action

If this alternative is selected, then no measures from Alternative Set 5 would be implemented and the existing observer measures (as described in section 5.5) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below.

5b. Mackerel Mid-Water Trawl (MWT)

Coverage of this fleet has historically primarily occurred because of the winter mixing of the herring and mackerel fisheries as opposed to focusing on the mackerel fishery. The sub-alternatives below would require a range of percentage-based coverage levels to improve coverage from the very low levels currently occurring and improve catch estimation.

5b1. Require 25% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5b2. Require 50% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5b3. Require 75% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5b4. Recommend 100% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel. (PREFERRED)

Note: Require was also changed to recommend since the Council makes recommendations to NMFS.

Summary of Biological Impact Analysis

Coverage of this fishery has historically been low, leading to low precision of RH/S catch estimates. Higher coverage would lead to better precision. To the degree that better data is used
to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since mackerel trips do not comprise all MWT activity, one can not specify the precision for RH/S catches in MWT gear if only mackerel trips increase observer coverage. Details on expected precision if all MWT activity achieved the above coverage levels can be found in Section 7. Non-target species would also benefit if the costs of coverage generally discouraged effort which would reduce interactions.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

NMFS has strongly communicated that the at-sea portion of any additional observer coverage would have to be paid for by industry. The at-sea cost of observers in the Northeast region is about $800 per day at sea while NMFS incurs about $400/day in administrative costs. The alternatives recommended by the Council for industry funding specify that vessels would pay $325/day toward the cost of observers to meet the Council's goals. Since different vessels have different average trip lengths and trip length varies by trip it is not possible to describe the impact on any given vessel. However, cost data collected through the observer program was used to estimate the increase in daily trip costs that $325/day would cause for MWT mackerel trips:

-9% for single MWT mackerel trips ($3,494 to $3,819)
-12% for paired MWT mackerel trips ($2,602 to $2,927)

The average trip cost values cited in this analysis include variable costs such as fuel, oil, ice, food, fishing supplies, vessel/gear damages, and water but do not include crew shares/wages, dockage fees, or boat mortgage payments. Trip costs were estimated based on 2010 observer data. These are the larger, higher-volume vessels – smaller vessels that start off with lower costs would see a higher percentage increase.

While the per-trip costs are most relevant to vessels, total costs can also be considered. Since coverage in this alternative would be related to 20,000 pound mackerel trips, 2006-2010 VTR data was analyzed to determine the approximate number of seadays fished on midwater trawl trips that kept 20,000 pounds or more of mackerel. These trips averaged 643 sea days each year ranging from 272 in 2010 to 926 in 2006. If 25%, 50%, 75%, or 100% of the average seadays (643) were observed it would require 161, 322, 482, and 643 days respectively. Multiplying these days by $325/day results in at-sea costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.05 million, $0.10 million, $0.16 million, and $0.21 million per year respectively. Multiplying these days by $400/day results in administrative costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.06 million, $0.13 million, $0.19 million, and $0.26 million per year respectively.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
5c. Mackerel Small Mesh Bottom Trawl (SMBT)

A very small percentage of mackerel trips are observed overall. The sub-alternatives below would require a range of percentage-based coverage levels to improve coverage from the very low levels currently occurring and improve catch estimation. Analysis in the document relates these coverage levels to potential ranges of uncertainty that would result from such coverage levels.

5c1. Require 25% of SMBT (<3.5 in) mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5c2. Require 50% of SMBT (<3.5 in) mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5c3. Require 75% of SMBT (<3.5 in) mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5c4. Recommend the following observer coverages percentages for mackerel limited access vessels intending to fish for or retain over 20,000 pounds of mackerel when using small mesh (<3.5 inches) bottom trawl gear: Tier 1: 100%; Tier 2: 50%; Tier 3: 25%. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel. (PREFERRED)

Note: The double underlined section highlights a modification from the original alternative in the DEIS. 5c4 has been modified to essentially combine 5c1, 5c2, and the original 5c4 by applying higher coverage levels for the higher tier vessels and lower coverage levels for the lower tier vessels. Since the original alternatives considered 25%-100% coverage applied to all mackerel permitted vessels, the modified alternative is within the scope of the alternatives considered in the DEIS. The rationale is that the vessels accounting for most mackerel landings should have the highest levels of coverage and other vessels would have coverage in proportion to their potential landings. Require was also changed to recommend since the Council makes recommendations to NMFS.
Summary of Biological Impact Analysis

Coverage of this fishery has historically been low, leading to low precision of RH/S catch estimates. Higher coverage would lead to better precision. To the degree that better data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since mackerel trips comprise a small part of SMBT activity, one can not specify the precision for RH/S catches in SMBT gear if only mackerel trips increase observer coverage. Details on expected precision if all SMBT activity achieved the above coverage levels can be found in Section 7. Non-target species would also benefit if the costs of coverage generally discouraged effort which would reduce interactions.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

NMFS has strongly communicated that the at-sea portion of any additional observer coverage would have to be paid for by industry. The at-sea cost of observers in the Northeast region is about $800 per day at sea while NMFS incurs about $400/day in administrative costs. The alternatives recommended by the Council for industry funding specify that vessels would pay $325/day toward the cost of observers to meet the Council's goals. Since different vessels have different average trip lengths and trip length varies by trip it is not possible to describe the impact on any given vessel. However, cost data collected through the observer program was used to estimate the increase in daily trip costs that $325/day would cause for higher volume SMBT mackerel trips:

-20% for higher volume SMBT mackerel trips ($1,639 to $1,964)

The average trip cost values cited in this analysis include variable costs such as fuel, oil, ice, food, fishing supplies, vessel/gear damages, and water but do not include crew shares/wages, dockage fees, or boat mortgage payments. Trip costs were estimated based on 2010 observer data. These are the larger, higher-volume vessels – smaller vessels that start off with lower costs would see a higher percentage increase.

While the per trip costs are most relevant to vessels, total costs can also be considered. Since coverage in this alternative would be related to 20,000 pound mackerel trips, 2006-2010 VTR data was analyzed to determine the approximate number of seadays fished on SMBT trips that kept 20,000 pounds or more of mackerel. These trips averaged 172 sea days each year ranging from 113 in 2009 to 286 in 2006. If 25%, 50%, 75%, or 100% of the average seadays (172) were observed it would require 43, 86, 129, and 172 days respectively. Multiplying these days by $325/day results in at-sea costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.01 million ($14,000), $0.03 million, $0.04 million, and $0.06 million per year respectively. Multiplying these days by $400/day results in administrative costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.02 million, $0.03 million, $0.05 million, and $0.07 million per year respectively.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
5d. Longfin Squid Small Mesh Bottom Trawl (SMBT)

While coverage has increased in 2011 related to the implementation of the butterfish mortality cap on the longfin squid fishery, a small percentage of longfin squid trips have been observed historically. The sub-alternatives below would require a range of percentage-based coverage levels to improve coverage from the very low levels currently occurring and improve catch estimation. Analysis in the document relates these coverage levels to potential ranges of uncertainty that would result from such coverage levels.

5d1. Require 25% of SMBT (<3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.

5d2. Require 50% of SMBT (<3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.

5d3. Require 75% of SMBT (<3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.

5d4. Require 100% of SMBT (<3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.
Summary of Biological Impact Analysis

Coverage of this fishery has historically been low, leading to low precision of RH/S catch estimates. Higher coverage would lead to better precision. To the degree that better data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since longfin squid trips do not comprise all SMBT activity, one can not specify the precision for RH/S catches in SMBT gear if only longfin squid trips increase observer coverage. Details on expected precision if all SMBT activity achieved the above coverage levels can be found in Section 7. Non-target species would also benefit if the costs of coverage generally discouraged effort which would reduce interactions.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

NMFS has strongly communicated that the at-sea portion of any additional observer coverage would have to be paid for by industry. The at-sea cost of observers in the Northeast region is about $800 per day at sea while NMFS incurs about $400/day in administrative costs. The alternatives recommended by the Council for industry funding specify that vessels would pay $325/day toward the cost of observers to meet the Council's goals. Since different vessels have different average trip lengths and trip length varies by trip it is not possible to describe the impact on any given vessel. However, cost data collected through the observer program was used to estimate the increase in daily trip costs that $325/day would cause:

- 35% for higher volume SMBT longfin squid trips ($939 to $1,264)
- 77% for lower volume SMBT longfin squid trips ($424 to $749)

The average trip cost values cited in this analysis include variable costs such as fuel, oil, ice, food, fishing supplies, vessel/gear damages, and water but do not include crew shares/wages, dockage fees, or boat mortgage payments. Trip costs are based on 2010 observer data.

While the per trip costs are most relevant to vessels, total costs can also be considered. Since coverage in this alternative would be related to 2,500 pound longfin squid trips, 2006-2010 VTR data was analyzed to determine the approximate number of seadays fished on SMBT trips that kept 2,500 pounds or more of longfin squid. These trips averaged 5,357 sea days each year ranging from 3,932 in 2010 to 6,743 in 2006. If 25%, 50%, 75%, or 100% of the average seadays (5,357) were observed it would require 1339, 2678, 4017, and 5,357 sea days respectively. Multiplying these days by $325/day results in at-sea costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.4 million, $0.9 million, $1.3 million, and $1.7 million per year respectively. Multiplying these days by $400/day results in administrative costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.5 million, $1.1 million, $1.6 million, and $2.1 million per year respectively. However, there may be returns to scale in the sense that at higher coverage levels NMFS marginal costs may become less than $400/day.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
5e. Strata-Fleet-Based Alternatives

Analysis performed for the amendment and detailed in Section 7 suggests that around 65% coverage could result in a 0.3 C.V. goal and about 90% coverage could result in a 0.2 C.V. goal for Mid-Atlantic MWT for alewife and blueback. Also, for small mesh bottom trawl, around 40% coverage could result in a 0.3 C.V. goal and about 60% coverage could result in a 0.2 C.V. goal for alewife and blueback. This was determined by averaging the required sea days from 2009-2010 for these goals, and then comparing those averages with total average days at sea for relevant trips from VTR data, 2009-2010. However it is emphasized that from year to year it will be very hard to hit a particular C.V. target due to the inherent variability from year to year in both the directed fisheries involved and their catch of river herrings. Since one cannot predict which years will require the highest coverage, some years would likely be over covered and some years would be under covered if coverage rates are determined by the previous year’s data.

Note: This alternative has a major implementation issue in that NMFS has said it will not approve increased observer coverage that is not funded by industry but the MAFMC cannot compel all fisheries by gear type to pay for observer coverage (only its own).

The following sub-alternatives would require coverage levels that would be expected to result in the specified C.V. levels for river herrings. Shad were not included because very high coverage levels would be required to achieve the respective C.V.s due to lower encounter rates.

5e1. Require NMFS to allocate sea days such that Mid-Atlantic alewife and blueback catch C.V.s for MWT would each be expected to be at or below 0.30.

5e2. Require NMFS to allocate sea days such that Mid-Atlantic alewife and blueback catch C.V.s for MWT would each be expected to be at or below 0.20.

5e3. Require NMFS to allocate sea days such that alewife and blueback catch C.V.s for SMBT would each be expected to be at or below 0.30.

5e4. Require NMFS to allocate sea days such that alewife and blueback catch C.V.s for SMBT would each be expected to be at or below 0.20.
Summary of Biological Impact Analysis

To the degree that better data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Non-target species would also benefit if the costs of coverage generally discouraged effort which would reduce interactions.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

The approximate cost for an observer is $800/day. In addition to at-sea costs, NMFS has estimated that it incurs approximately $400/day in administrative costs related to each additional day at sea.

Compared to the approximate sea days provided in 2010, achieving a 0.3 C.V. for both blueback herring and alewife in the Mid-Atlantic for MWT would require 232-476 extra sea days (costing about $0.2-$0.4 million) and achieving a 0.2 C.V. for both blueback herring and alewife in the Mid-Atlantic for MWT would require 686-344 extra sea days (costing about $0.3-$0.5 million), with at sea costs being $800/day. Administrative costs to NMFS would equal an additional 50% of the at-sea costs ($400/day). The range is related to the fact that C.V.s vary from year to year related to variation in the underlying data.

Compared to the approximate sea days provided in 2010, achieving a 0.3 C.V. for both blueback herring and alewife in the SMBT (Mid-Atlantic and New England) would require 1,410-2,478 extra sea days (costing about $1.1-$2.0 million) and achieving a 0.2 C.V. for both blueback herring and alewife in the Mid-Atlantic for MWT would require 2,850-3,757 extra sea days (costing about $2.3-$3.0 million), with at sea costs being $800/day. Administrative costs to NMFS would equal an additional 50% of the at-sea costs ($400/day). The range is related to the fact that C.V.s vary from year to year related to variation in the underlying data.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
5f. Vessels would have to pay $325 (modifiable via specifications) for observers when they carry observers to meet the observer coverage goals adopted by the Council in 5b4 and 5c4. NEFSC would accredit observers and vessels would have to contract and pay observers. (PREFERRED)

Note: This alternative represents a modification from the original alternative in the DEIS. In the original alternative, vessels had to pay the full cost of observer days beyond the standard NMFS-established coverage. The Council modified this alternative such that vessels selected for coverage would have to pay $325 per day to fund the overall observer goals. Since the original alternative considered full industry funding of the required observer days, this is within the range between no funding and full funding. The original DEIS analyzed industry paying for 100% of the at-sea cost ($800) of all related observer trips due to the possibility of reduced federal funding of observers in the future, so having all observed trips pay only $325 lies in between the no action and the original alternative.

Summary of Biological Impact Analysis

Biological impacts should be independent of who pays for data.

Summary of Socio-Economic Impact Analysis

See 5b-5e above.

5g. Phase-in industry funding over 4 years such that to achieve the target coverage selected in 4b-4e above, NMFS would pay for 100%, 75%, 50%, then 25% of the at-sea portion of the specified observer coverage (NOTE: NMFS has indicated this is not feasible from a funding point of view).

Summary of Biological Impact Analysis

Biological impacts should be independent of who pays for data.

Summary of Socio-Economic Impact Analysis

Alternatives 5b-5e above compare the cost of observer coverage relative to different coverage levels and precision targets. In the short term cost-sharing with NMFS would make the economic impacts less but would not have an impact on the long term. For this alternative, if NMFS paid 100% of the observer coverage there would be negligible socio-economic impacts. For the phase in years, the impacts per trip would be the same as described above, but the number of trips for which industry would have to pay for observers would be less, at least initially.
5h. Require reevaluation of coverage requirement after 2 years to determine if catch rates justify continued expense of continued high coverage rates. (PREFERRED)

The Council would conduct an examination of the results of any higher coverage rates implemented through this action and consider if adjustments to the coverage rates are warranted. Depending on the results and desired actions, subsequent action could be accomplished via specifications, a framework adjustment, or an Amendment as appropriate.

Summary of Biological Impact Analysis

No immediate impacts would be expected. Any potential follow-up actions would be subsequently analyzed and considered separately.

Summary of Socio-Economic Impact Analysis

No immediate impacts would be expected. Any potential follow-up actions would be subsequently analyzed and considered separately.
2.1.6 Alternative Set 6 - Mortality Caps

Background/Statement of Problem/Need for Action:

There are currently no limits on catch of RH/S in the mackerel and/or longfin squid fisheries other than state landing requirements.

The alternatives would seek to directly limit the mortality of the relevant RH/S species in the mackerel and longfin squid fisheries. While the actual mortality cap quantities would be determined during the specifications process just as annual ACLs/AMs are set, this document explores a range of options so that likely impacts may be evaluated. The range of mortality cap quantities would be evaluated in an environmental assessment during the specifications process (though without comprehensive RH/S assessments it is not possible to determine if any particular quantity of RH/S catch is sustainable). The following values are primarily provided to give the reader a sense of impacts from a range of mortality caps that will be investigated in greater depth during the specifications process. A summary of the key biological and human community impacts (detailed in section 7) follows for each alternative. It is possible that a single cap for RH/S combined may be used to implement the preferred alternatives 6b and 6c if the Council chooses to do so via the annual specifications.

NOTE ON COMBINATIONS: All of the action alternatives in this Alternative Set could be implemented singly or in combination with any other alternative(s) in this Alternative Set.

6a. No-action

If this alternative is selected, then no measures from Alternative Set 6 would be implemented and the existing state management measures (as described in section 5.9) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below.

6b. Implement a mortality cap for river herrings for the mackerel fishery whereby the mackerel fishery would close once it is determined that it created a certain level of river herring mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S). (PREFERRED)

One way to assign mortality caps for river herring would be to base it on the range of estimated river herring mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic mid-water trawl (MWT) fishing in Quarter 1, which is largely but not completely mackerel fishing, accounted for 35% of total river herring mortality 2005-2010. MWT fishing in Quarter 1 is mixed, with mackerel comprising over 50% of the landings, but herring making up a large amount of landings in January (see Figure 21A of Appendix 2). The table below describes total ocean and quarter 1 mid-water trawl mortalities in the leftmost columns.
Table 1. Example River Herring Caps For Mackerel

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Water Trawl Quarter 1 mortality (35% of total)</th>
<th>Mortality Cap Possibility</th>
<th>Mackerel would close at these landings (mt) with high ratio, 0.86%</th>
<th>Mackerel would close at these landings (mt) with mean ratio, 0.45%</th>
<th>Mackerel would close at these landings (mt) with low ratio, 0.02%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>245</td>
<td>86</td>
<td></td>
<td>9,975</td>
<td>19,063</td>
<td>428,908</td>
</tr>
<tr>
<td>2007</td>
<td>664</td>
<td>232</td>
<td></td>
<td>27,029</td>
<td>51,656</td>
<td>1,162,263</td>
</tr>
<tr>
<td>2008</td>
<td>672</td>
<td>235</td>
<td></td>
<td>27,333</td>
<td>52,237</td>
<td>1,175,335</td>
</tr>
<tr>
<td>2009</td>
<td>361</td>
<td>126</td>
<td></td>
<td>14,679</td>
<td>28,053</td>
<td>631,190</td>
</tr>
<tr>
<td>2010</td>
<td>244</td>
<td>85</td>
<td></td>
<td>9,911</td>
<td>18,940</td>
<td>426,160</td>
</tr>
</tbody>
</table>

Using the separate ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 50% or at least 100,000 pounds of mackerel (encompasses almost all landings) results in annual river herring mortality ratios from 0.02% in 2007 to .86% in 2009 with a mean of 0.45. If these values were used with the above range of mortality caps, the amount of total fish (the ratio is based on all fish retained) that could be harvested by trips as defined above before the mackerel fishery was shut down by the river herring mortality cap is illustrated in the rightmost 3 columns depending of the ratio of river herring. The main point is that whether mackerel would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of river herring was, and what the mackerel availability was. In the above table the range of caps is just a percentage of the observed catch over the years 2006-2010. Since the realized ratio can vary substantially from year to year, it is not possible to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all.

Summary of Biological Impact Analysis

If a cap was set low enough to shut the directed fishery down, there would be some benefits to RH/S. However, since the linkage between catch of RH/S and RH/S stock status and productivity is not known, the impacts are not quantifiable. Smaller caps and earlier closures should lead to relatively higher benefits.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

If a low cap is chosen and a high ratio is observed, the directed fishery would close due to the cap before it reached the directed fishery quota. This could result in revenue losses to fishery participants that would be dependent on the exact level of the cap, the catch ratio, and prices for the directed species that are “left in the water” because of the cap closure. The ranges described in the above table would suggest potentially forgone revenue as high as about $8 million or as
low as zero dollars at 2010 ex-vessel prices depending on the above factors and based on the 2012 quota.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

6c. Implement a mortality cap for shads for the mackerel fishery whereby the mackerel fishery would close once it is determined that it created a certain level of shad mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S). (PREFERRED)

One way to assign mortality caps for shad would be to base it on the range of estimated shad mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic mid-water trawl fishing in Quarter 1, which is largely but not completely mackerel fishing, accounted for 12% of total shad mortality 2005-2010. The table below describes total ocean and quarter 1 mid-water trawl mortalities in the leftmost columns (2006 omitted because of lack of shad records).

<table>
<thead>
<tr>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Water Trawl Quarter 1 mortality (mt) (12% of total) = Mortality Cap Possibility</th>
<th>Mackerel would close at these landings (mt) with high ratio, 0.05%</th>
<th>Mackerel would close at these landings (mt) with mean ratio, 0.03%</th>
<th>Mackerel would close at these landings (mt) with low ratio, 0.004%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>60</td>
<td>7</td>
<td>14,364</td>
<td>23,940</td>
</tr>
<tr>
<td>2008</td>
<td>60</td>
<td>7</td>
<td>14,450</td>
<td>24,084</td>
</tr>
<tr>
<td>2009</td>
<td>70</td>
<td>8</td>
<td>16,903</td>
<td>28,172</td>
</tr>
<tr>
<td>2010</td>
<td>47</td>
<td>6</td>
<td>11,338</td>
<td>18,896</td>
</tr>
</tbody>
</table>

Using the separate ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 50% or at least 100,000 pounds of mackerel (encompasses almost all landings) results in annual shad mortality ratios from 0.004% in 2009 to 0.05% in 2007 with a mean of 0.03. If these values were used with the above range of mortality caps, the amount of total fish (the ratio is based on all fish retained) that could be harvested by trips as defined above before the mackerel fishery was shut down by the shad mortality cap is illustrated in the rightmost 3 columns depending of the ratio of shad. The main point is that whether mackerel would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of shad was, and what the mackerel availability was. In the above table the range of caps is just a percentage of the observed catch over the years 2006-2010. Since the realized ratio can vary substantially from year to year, it is not possible to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all.
Summary of Biological Impact Analysis

If a cap was set low enough to shut the directed fishery down, there would be some benefits to RH/S. However, since the linkage between catch of RH/S and RH/S stock status and productivity is not known, the impacts are not quantifiable. Smaller caps and earlier closures should lead to relatively higher benefits.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

If a low cap is chosen and a high ratio is observed, the directed fishery would close due to the cap before it reached the directed fishery quota. This could result in revenue losses to fishery participants that would be dependent on the exact level of the cap, the catch ratio, and prices for the directed species that are "left in the water" because of the cap closure. The ranges described in the above table would suggest potentially forgone revenue as high as about $7 million or as low as zero dollars at 2010 ex-vessel prices depending on the above factors and compared to full utilization of a quota at the 2012 level.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

THIS SPACE INTENTIONALLY LEFT BLANK
6d. Implement a mortality cap for river herring for the longfin squid fishery whereby the longfin squid fishery would close once it is determined that it created a certain level of river herring mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S).

One way to assign mortality caps for river herring would be to base it on the range of estimated river herring mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic small mesh bottom trawl accounted for 5% of total river herring mortality. While Mid-Atlantic small mesh bottom trawl encompasses a variety of fisheries besides longfin squid (including Atlantic herring), some of the New England small mesh bottom trawl mortality is probably related to longfin squid fishing so using the full Mid-Atlantic value is probably reasonable. The table below describes total ocean and 5% of total mortalities in the leftmost columns.

Table 3. Example River Herring Caps For Longfin Squid

<table>
<thead>
<tr>
<th></th>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Atlantic Small Mesh Bottom Trawl Mortality (mt) (5% of total) = Mortality Cap Possibility</th>
<th>Longfin squid would close at these landings (mt) with high ratio, 0.17%</th>
<th>Longfin squid would close at these landings (mt) with mean ratio, 0.06%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>245</td>
<td>12</td>
<td>7,233</td>
<td>20,424</td>
</tr>
<tr>
<td>2007</td>
<td>664</td>
<td>33</td>
<td>19,534</td>
<td>55,346</td>
</tr>
<tr>
<td>2008</td>
<td>672</td>
<td>34</td>
<td>19,754</td>
<td>55,968</td>
</tr>
<tr>
<td>2009</td>
<td>361</td>
<td>18</td>
<td>10,608</td>
<td>30,057</td>
</tr>
<tr>
<td>2010</td>
<td>244</td>
<td>12</td>
<td>7,162</td>
<td>20,293</td>
</tr>
</tbody>
</table>

Using the separate ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 2,500 pounds longfin squid (encompasses almost all landings) results in annual river herring mortality ratios from almost zero in 2007 to .17% in 2009 with a mean of 0.06%. If these values were used with the above range of mortality caps, the amount of total fish (the ratio is based on all fish retained) that could be harvested by trips as defined above before the longfin squid fishery was shut down by the river herring mortality cap is illustrated on the rightmost 2 columns depending of the ratio of river herring. The main point is that whether longfin squid would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of river herring was, and what the longfin squid availability was. In the above table the range of caps is just a percentage of the observed catch over the years 2006-2010. Since the realized ratio can vary substantially from year to year, it is not possible to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all.
Summary of Biological Impact Analysis

If a cap was set low enough to shut the directed fishery down, there would be some benefits to RH/S. However, since the linkage between catch of RH/S and RH/S stock status and productivity is not known, the impacts are not quantifiable. Smaller caps and earlier closures should lead to relatively higher benefits.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

If a low cap is chosen and a high ratio is observed, the directed fishery would close due to the cap before it reached the directed fishery quota. This would result in revenue losses to fishery participants that would be dependent on the exact level of the cap and the catch ratio, and prices for the directed species that “is left in the water” because of the cap closure. The ranges described in the above table would suggest potentially forgone revenue as high as about $35 million or as low as zero dollars at 2010 ex-vessel prices depending on the above factors and compared to full utilization of a quota at the 2012 level.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.
6e. Implement a mortality cap for shads for the longfin squid fishery whereby the longfin squid fishery would close once it is determined that it created a certain level of shad mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S).

One way to assign mortality caps for shad would be to base it on the range of estimated shad mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic small mesh bottom trawl accounted for 11.5% of total shad mortality. While Mid-Atlantic small mesh bottom trawl encompasses a variety of fisheries besides longfin squid (including Atlantic herring), some of the New England small mesh bottom trawl mortality is probably related to longfin squid fishing so using the full Mid-Atlantic value is probably reasonable. The table below describes total ocean and 11.5% of total mortalities in the leftmost columns.

Table 4. Example Shad Caps For Longfin Squid

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Atlantic Small Mesh Bottom Trawl Mortality (mt) (11.5% of total) =</th>
<th>Longfin squid would close at these landings (mt) with high ratio, 0.21%</th>
<th>Longfin squid would close at these landings (mt) with mean ratio, 0.10%</th>
<th>Longfin squid would close at these landings (mt) with low ratio, 0.03%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>47</td>
<td>5</td>
<td>2,587</td>
<td>5,433</td>
<td>18,109</td>
</tr>
<tr>
<td>2007</td>
<td>60</td>
<td>7</td>
<td>3,278</td>
<td>6,883</td>
<td>22,943</td>
</tr>
<tr>
<td>2008</td>
<td>60</td>
<td>7</td>
<td>3,297</td>
<td>6,924</td>
<td>23,081</td>
</tr>
<tr>
<td>2009</td>
<td>70</td>
<td>8</td>
<td>3,857</td>
<td>8,099</td>
<td>26,998</td>
</tr>
<tr>
<td>2010</td>
<td>47</td>
<td>5</td>
<td>2,587</td>
<td>5,433</td>
<td>18,109</td>
</tr>
</tbody>
</table>

Using the separate ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 2,500 pounds longfin squid (encompasses almost all landings) results in annual shad mortality ratios from almost 0.03% in 2009 to 0.21% in 2010 with a mean of 0.10%. If these values were used with the above range of mortality caps, the amount of total fish (the ratio is based on all fish retained) that could be harvested by trips as defined above before the longfin squid fishery was shut down by the shad mortality cap is illustrated in the rightmost 2 columns depending of the ratio of shad. The main point is that whether longfin squid would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of shad was, and what the longfin squid availability was. In the above table the range of caps is just a percentage of the observed catch over the years 2006-2010. Since the realized ratio can vary substantially from year to year, it is not possible to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all.
Summary of Biological Impact Analysis

If a cap was set low enough to shut the directed fishery down, there would be some benefits to RH/S. However, since the linkage between catch of RH/S and RH/S stock status and productivity is not known, the impacts are not quantifiable. Smaller caps and earlier closures should lead to relatively higher benefits.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

If a low cap is chosen and a high ratio is observed, the directed fishery would close due to the cap before it reached the directed fishery quota. This would result in revenue losses to fishery participants that would be dependent on the exact level of the cap and the catch ratio, and prices for the directed species that “is left in the water” because of the cap closure. The ranges described in the above table would suggest potentially forgone revenue as high as about $45 million or as low as zero dollars at 2010 ex-vessel prices depending on the above factors and based on the proposed 2012 quota.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

6f. Add mortality caps to list of measures that can be frameworked. (PREFERRED)

Summary of Biological Impact Analysis

Allowing a cap to be considered via a framework should not have any impacts other than allowing more rapid management responses in the future. No immediate impacts would be expected. Any potential follow-up actions would be subsequently analyzed and considered separately.

Summary of Socio-Economic Impact Analysis

Allowing a cap to be considered via a framework should not have any impacts other than allowing more rapid management responses in the future. No immediate impacts would be expected. Any potential follow-up actions would be subsequently analyzed and considered separately.
2.1.7 Alternative Set 7 – Restrictions in areas of high RH/S catch

Background/Statement of Problem/Need for Action:

There are currently no limits on catch of RH/S in the mackerel and/or longfin squid fisheries other than state landing requirements.

The Council originally hoped to include some alternatives that would restrict fishing in relatively small areas that appeared to be “hotspots” for RH/S catch. The Amendment’s Fishery Management Action Team’s found that small-area management is unlikely to be successful (see Appendices 1 & 2). Because the Council instructed the FMAT to generate area-based alternatives that would be likely to provide protection to RH/S, the FMAT generated several alternatives that are area based but the FMAT also acknowledged that such large-scale closures would effectively close the fisheries for many participants.

Council staff attempted to perform additional smaller-scale examinations of the data (for example around Hudson canyon) and while at such small scales there were too few observations to draw conclusions, even at small scales catch events usually exhibited strong spatial-temporal variability.

The FMAT analysis suggests that because of the spatial and temporal variability of observed (Northeast Fishery Observer Program or “NEFOP”) RH/S catch, the same kind of variability in mackerel and longfin squid effort and catch, and the same kind of variability in RH/S NEFSC trawl survey catches, that very large areas would be required to ensure that management was not just redistributing effort, possibly in a way that even increased RH/S catch. For this reason Council staff used the FMAT GIS analysis (See appendices 1 and 2) to construct areas for mackerel and longfin squid based on the mid-water and small-mesh bottom trawl fleet effort data and RH/S catch data. The table below is designed to help illustrate how even if you reduce catch rates of one species, for example blueback, but reduce catch rates of the directed species (for example mackerel) even more, it can be possible to do more harm than good if the fleet increases effort to maintain the same amount of harvest. In the table below ”good" means a net reduction of blueback catch, "negligible" means no appreciable change, and "bad" means a net increase in blueback catch. The general point is that if RH/S catch rates are reduced but targeted species catch rates are reduced more, the net effect (because of more overall effort) may be bad for RH/S. Larger areas would not allow such redistribution of effort however. A summary of the key biological and human community impacts (detailed in section 7) follows for each alternative.
Table 5. Direct-Non-target Impact Schematic

Effects on RH catch of moving effort assuming effort changes to maintain constant mackerel catch if CPUE changes

<table>
<thead>
<tr>
<th>Blueback</th>
<th>CPUE Changes</th>
<th>Mackerel</th>
<th>Blueback</th>
<th>CPUE Changes</th>
<th>Mackerel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>neutral</td>
<td>a little lower</td>
<td></td>
<td>bad</td>
</tr>
<tr>
<td></td>
<td>neutral</td>
<td>negligible</td>
<td>a little lower</td>
<td></td>
<td>good</td>
</tr>
<tr>
<td></td>
<td>a little lower</td>
<td>good</td>
<td>a little lower</td>
<td></td>
<td>good</td>
</tr>
<tr>
<td></td>
<td>a lot lower</td>
<td>good</td>
<td>a lot lower</td>
<td></td>
<td>negligible</td>
</tr>
</tbody>
</table>

NOTE ON COMBINATIONS: 7bMack and 7cMack are mutually exclusive – the Council could close the area to directed fishing (7bMack) or require observers (7cMack) but not both. Likewise 7bLong and 7cLong are mutually exclusive – the Council could close the area to directed fishing (7bLong) or require observers (7cLong) but not both. One of the mackerel alternatives (either 7bMack or 7cMack) could be combined with one of the longfin squid alternatives (either 7bLong or 7cLong) however. 7d could be added to any 7b or 7c alternative to make those provisions only applicable after a cap-based trigger was reached. The Council would have to specify in this case that the Alternative Set 6 cap trigger was only a trigger for Alternative Set 7 rather than a stand-alone cap measure. 7e could be chosen in addition to any other alternative in this Alternative Set.

Given the overlapping nature of Alternative Sets 7 and 8, it is not expected that alternatives would be chosen from both Alternative Sets 7 and 8 for one fishery. One could select an alternative for the longfin squid fishery from one set and for the mackerel fishery from another set, but not from both sets for one fishery.

The enforceability of area-based management alternatives could be facilitated by the selection of the vessel monitoring system (VMS) requirement in Alternative Set 1 (alternatives 1eMack or 1eLong).

The selection of alternatives that include observer coverage requirements (7cMack and 7cLong) would require the selection of observer program notification alternatives for limited access mackerel permits in Alternative Set 1(1d48 and 1d72).

7a. No-action regarding large closed areas (PREFERRED)

If this alternative is selected, then no measures from Alternative Set 7 would be implemented and the existing state management measures (as described in section 5.9) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below.
7bMack. Closed Area - Prohibit retention of more than 20,000 pounds of mackerel in RH/S Mackerel Management Area (applies in quarter 1 only – see map below) for vessels with federal mackerel permits.

Summary of Biological Impact Analysis

Given the RH/S Mackerel Management Area encompasses most quarter-one mid-water trawl effort as well as most quarter-one observer data observations of RH/S catch, which are estimated to account for 35% of total RH/S catch, it is likely that effectively closing this area to mackerel fishing would create some positive impacts for mackerel as well as RH/S and other non-target species, but it is not possible to quantify the effect (if any) on RH/S stocks of catching one amount of RH/S versus some other amount due to the paucity of assessment information.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

As described in the table below, about 85% of mackerel revenues with an assigned area (2/3 to ¾ of total landings) from 2006-2010 came from within the RH/S Mackerel Management Area. While vessels would compensate as best they could so impacts are difficult to further quantify, vessels that typically rely on mackerel would likely suffer economically.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

Table 6. Distribution of Mackerel Revenues in and out of RH/S Area

<table>
<thead>
<tr>
<th></th>
<th>Outside Mackerel Value ($)</th>
<th>Inside Mackerel Value ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>3,149,111</td>
<td>17,323,851</td>
</tr>
<tr>
<td>2007</td>
<td>946,926</td>
<td>2,666,001</td>
</tr>
<tr>
<td>2008</td>
<td>553,705</td>
<td>3,200,344</td>
</tr>
<tr>
<td>2009</td>
<td>681,665</td>
<td>6,655,122</td>
</tr>
<tr>
<td>2010</td>
<td>471,663</td>
<td>2,920,919</td>
</tr>
<tr>
<td>Total</td>
<td>5,803,070</td>
<td>32,766,237</td>
</tr>
<tr>
<td>%</td>
<td>15%</td>
<td>85%</td>
</tr>
</tbody>
</table>

Source: Unpublished VTR Data
Prohibit retention of more than 2,500 pounds longfin squid in RH/S Longfin Squid Management Area (applies year-round – see maps below) for vessels with federal longfin squid moratorium permits.

Summary of Biological Impact Analysis

Given the RH/S Longfin Squid Management Area encompasses most small mesh bottom trawl effort, which is responsible for 24% of RH/S catch, it is likely that effectively closing this area to longfin squid fishing would create some positive impacts for longfin squid as well as non-target species such as RH/S, but it is not possible to quantify the effect (if any) on RH/S stocks of catching one amount of RH/S versus some other amount due to the paucity of assessment information. However, examination of targeting information in the observer data suggests that RH/S encounters in SMBT fisheries are more associated with targeting of Alt Herring so impacts may not be large from restrictions only on SMBT longfin squid fishing.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

As described in the table below, about 71% of longfin squid kept catch (VTR data) from 2006-2010 came from within the RH/S longfin squid Management Area. While vessels would compensate as best they could so impacts are difficult to further quantify, vessels that typically rely on longfin squid would likely suffer economically.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

Table 7. Distribution of longfin squid VTR catches in and out of RH/S Area.

<table>
<thead>
<tr>
<th>Year</th>
<th>Outside Loligo Pounds</th>
<th>Inside Loligo Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>7,139,722</td>
<td>30,323,237</td>
</tr>
<tr>
<td>2007</td>
<td>16,516,551</td>
<td>12,991,085</td>
</tr>
<tr>
<td>2008</td>
<td>6,692,942</td>
<td>20,772,623</td>
</tr>
<tr>
<td>2009</td>
<td>4,352,451</td>
<td>17,991,543</td>
</tr>
<tr>
<td>2010</td>
<td>4,050,619</td>
<td>12,510,747</td>
</tr>
<tr>
<td>Total</td>
<td>38,752,285</td>
<td>94,589,235</td>
</tr>
<tr>
<td>%</td>
<td>29%</td>
<td>71%</td>
</tr>
</tbody>
</table>

Source: Unpublished VTR Data
7cMack. Require observers in RH/S Mackerel Management Area (applies in quarter 1 only – see map below) for vessels with federal mackerel permits to retain more than 20,000 pounds of mackerel. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries). NEFSC would accredit observers and vessels would have to contract and pay observers.

Summary of Biological Impact Analysis

To the degree that better data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. To the degree that fishermen did not fish because of the requirement there could be benefits to the managed species as well as non-target species and protected resources. To the extent that fishermen transferred effort there could be unknown impacts on other managed species, non-target species, habitat, and protected resources.

Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

The cost of observers relative to vessel revenues and existing costs is described in Alternative Set 5.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

7cLong. Require observers in RH/S longfin squid Management Area (applies year round) for vessels with federal longfin squid permits to possess more than 2,500 pounds of longfin squid. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries). NEFSC would accredit observers and vessels would have to contract and pay observers.

Summary of Biological Impact Analysis

To the degree that better data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. To the degree that fishermen did not fish because of the requirement there could be benefits to the managed species as well as non-target species, habitat, and protected resources. To the extent that fishermen transferred effort there could be unknown impacts on other managed species, non-target species, habitat, and protected resources.
Summary of Socio-Economic Impact Analysis

Impacts are mixed with an uncertain net impact.

The cost of observers relative to vessel revenues and existing costs is described in Alternative Set 5.

While there are human community costs associated with this alternative, there also could be human community benefits as described in Section 2.1.

7d. Make above requirement(s) in effect only when a mortality cap "trigger" is reached. Operation of a “trigger” would be identical to the operation of a mortality cap (see Alternative Set 6 above) but the consequence of hitting the cap would be implementing 7b and/or 7c above if this alternative is selected in conjunction with 7b and/or 7c above. Trigger levels would be specified annually via specifications.

This option would use a mortality cap but instead of shutting down the fishery either the closed area or 100% observer coverage requirements in this Alternative Set would go into force. This alternative could only be selected in conjunction with 7b and/or 7c above.

Summary of Biological Impact Analysis

To the degree that a mortality cap gave fishermen incentive to avoid RH/S there could be positive impacts to RH/S. Once a cap was reached, then the same impacts as discussed above with 7b and/or 7c would be applicable but to a lesser degree since they would not be in force for the full year.

THIS SPACE INTENTIONALLY LEFT BLANK
Summary of Socio-Economic Impact Analysis

To the degree that a mortality cap gave fishermen the opportunity to avoid RH/S and avoid more onerous requirements such as 7b or 7c above, a mortality cap trigger could have a positive impact compared to 7b or 7c alone. Once a cap was reached, then the same impacts as discussed above with 7b and/or 7c would be applicable but to a lesser degree since they would not be in force for the full year.

7e. Stipulate that any areas designated in Amendment 14 would be considered for updating every other year in specifications considering the most recent data available when specifications are developed.

Summary of Biological Impact Analysis

7e should not have any impacts other than facilitating future management responses.

Summary of Socio-Economic Impact Analysis

7e should not have any impacts other than facilitating future management responses.
Figure 1. RH/S Mackerel Management Area (would apply in Quarter 1 only) over Quarter 1 MWT effort and RH/S Catch
Spatial distribution of nominal effort (days fished from Vessel Trip Reports) for the small mesh (codend mesh ≤ 3.5 in.) bottom trawl fleet and the fleet’s incidental catch rates (kept+discarded weight/days fished from observed NEFOP trips) of alewife, blueback herring, hickory shad, and American shad combined, by ten-minute square, during Quarter 1 (left) and 2 (right) for 2005-2010.

Figure 2. RH/S Longfin squid Management Area over small mesh bottom effort and RH/S Catch (Quarters 1 and 2)
Figure 3. RH/S Longfin squid Management Area over small mesh bottom effort and RH/S Catch (Quarters 3 and 4)
2.1.8 Alternative Set 8 – Hotspot Restrictions

Background/Statement of Problem/Need for Action:

There are currently no limits on catch of RH/S in the mackerel and/or longfin squid fisheries other than state landing requirements.

The Council originally hoped to include some alternatives that would restrict fishing in relatively small areas that appeared to be “hotspots” for RH/S catch. The Amendment’s Fishery Management Action Team’s found that small-area management is unlikely to be successful (see Appendices 1 & 2). However, the New England Fishery Management Council’s Amendment 5 to the Atlantic Herring FMP is considering small area “hotspot” alternatives. While Amendment 5 concluded that low positive impacts would result from the hotspot alternatives, it also noted that catch rates could increase outside of the hotspot areas which would seem to mirror the conclusions of the FMAT for Amendment 14 regarding the problems with small area management.

Regardless, to allow for potential coordination between this Amendment and Amendment 5 to the Atl. Herring FMP, the hotspot alternatives have been included as alternatives that would apply to mackerel and/or longfin squid fishing. Also, Since Atlantic herring and mackerel are often targeted by the same vessels and are sometimes targeted together at the same time, it makes sense to consider these alternatives even though they were based on observer data from “herring trips” as defined below.

The smallest areas are termed “River Herring Protection Areas.” These Protection Areas were identified bimonthly as the quarter degree squares with at least one observed tow of river herring catch greater than 1,233 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring during the respective 2-month period. The protection areas include just the portion of the monitoring/avoidance areas (described below) that have the highest river herring catches on Atlantic herring trips as defined above. Since the raw observer data were pooled across years, the threshold was only one tow, and the results are only from Herring Trips, they do not reflect how much total river herring was caught in the Protection Area versus other areas in a given year.

Slightly larger areas are termed “River Herring Monitoring/Avoidance Areas.” These Monitoring/Avoidance Areas were identified bimonthly as the quarter degree squares with at least one observed tow of river herring catch greater than 40 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring during the respective 2-month period. They include all of the area identified in the protection areas as well is areas where a more modest amount of river herring was caught. Since the raw observer data were pooled across years, the threshold was only one tow, and the results are only from Herring Trips, they do not reflect how much total river herring was caught in the Monitoring/Avoidance Areas versus other areas in a given year.

These protection and monitoring/avoidance areas are mapped below by their respective bi-monthly periods. Since seeing them on the same page clarifies the differences among the areas,
they are illustrated together below (where applicable). Management measures that could apply to these areas follow the maps.

Figure 4. January – February Herring Areas

Protection Area (highest catch records from Monitoring/Avoidance Area)

Monitoring/Avoidance Area
Figure 5. **March – April Herring Areas**

Protection Area (highest catch records from Monitoring/Avoidance Area)
None proposed – there were no qualifying observer records (quarter degree squares with at least one observed tow of river herring catch greater than 1,233 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring).

Monitoring/Avoidance Area
Figure 7. July – August Herring Areas

Protection Area

None proposed – there were no qualifying observer records (quarter degree squares with at least one observed tow of river herring catch greater than 1,233 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring).

THIS SPACE INTENTIONALLY LEFT BLANK

Monitoring/Avoidance Area

![River Herring Monitoring/Avoidance Areas](image)
Figure 8. September – October Herring Areas

Protection Area (highest catch records from Monitoring/Avoidance Area)

Monitoring/Avoidance Area
Figure 9. November – December Herring Areas

Protection Area (highest catch records from Monitoring/Avoidance Area)

Monitoring/Avoidance Area
Management Measures

For the areas described above a variety of management measures are being considered. A summary of the key biological and human community impacts (detailed in section 7) follows. Related to the FMAT findings that small, inter-annually fixed “hotspot” closures are unlikely to be effective, the impacts for all of the alternatives are the same and are described after all of the potential alternatives are described.

NOTE ON COMBINATIONS: All of the action alternatives in the set could be adopted individually or together. 8f, which would make any of the requirements selected in this Alternative Set only applicable when the same measures were in effect for the Atlantic Herring fishery, would only be chosen if at least one alternative among 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong was also chosen.

Given the overlapping nature of Alternative Sets 7 and 8, it is not expected that alternatives would be chosen from both Alternative Sets 7 and 8 for one fishery. One could select an alternative for the longfin squid fishery from one set and for the mackerel fishery from another set, but not from both sets for one fishery.

The enforceability of area-based management alternatives could be facilitated by the selection of the vessel monitoring system (VMS) requirement in Alternative Set 1 (alternatives 1eMack or 1eLong).

The selection of alternatives that include observer coverage requirements (8cMack and 8cLong) would require the selection of observer program notification alternatives for limited access mackerel permits in Alternative Set 1(1d48 and 1d72).

If an overall observer coverage requirement in Alternative Set 5 was selected but did not result in a trip covered by an alternative in this Alternative Set having an observer, this Alternative Set would effectively require additional coverage.

NOTE: Due to their similar likely impacts, all impacts for the action alternatives in this Alternative Set are summarized below 8f.

8a. No-action

If this alternative is selected, then no measures from Alternative Set 8 would be implemented and the existing state management measures (as described in section 5.9) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below.
8b. Make implementing area-based "hotspot closures" to reduce catches (similar to those considered in NEFMC's Amendment 5 to the Atlantic Herring Plan) frameworkable. (PREFERRED)

The wording of this alternative has been modified from the DEIS to clarify the Council's intent but the substance of the alternative has not changed.

The Council would make the hotspot requirements considered below frameworkable under a subsequent action. Biological and Socioeconomic considerations would be reevaluated when the framework was developed. No immediate impacts would be expected. Any potential follow-up actions would be subsequently analyzed and considered separately.

8cMack. For Atlantic mackerel permitted vessels, more than an incidental level of fish (20,000 pounds mackerel) may not be retained/transferred/possessed if any fishing occurs in a River Herring Monitoring/Avoidance Area without a NMFS-approved observer at any point during the trip. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries).

8cLong. For longfin squid permitted vessels, more than an incidental level of fish (2,500 pounds longfin squid) may not be retained/transferred/possessed if any fishing occurs in a River Herring Monitoring/Avoidance Area without a NMFS-approved observer at any point during the trip. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries).

8dMack. If a mackerel-permitted vessel is fishing in any River Herring Monitoring/Avoidance Areas identified in this alternative with an observer onboard, vessels would be required to pump/haul aboard all fish from the net for inspection and sampling by the observer. Vessels that do not pump fish would be required to bring all fish aboard the vessel for inspection and sampling by the observer. Unless specific conditions are met (see below), vessels would be prohibited from releasing fish from the net, transferring fish to another vessel that is not carrying a NMFS-approved observer, or otherwise discarding fish at sea, unless the fish have first been brought aboard the vessel and made available for sampling and inspection by the NMFS-approved observer.

- Vessels may make short test tows in the area to check the abundance of target and non-target species without pumping the fish on board if the net is reset without releasing the contents of the test tow. In this circumstance, catch from the test tow would remain in the net and would be available to the observer to sample when the subsequent tow is pumped out.
• Fish that have not been pumped aboard may be released if the vessel operator finds that:
 1. pumping the catch could compromise the safety of the vessel;
 2. mechanical failure precludes bringing some or all of the catch aboard the vessel; or
 3. spiny dogfish have clogged the pump and consequently prevent pumping of the rest of the catch.

• If the net is released for any of the reasons stated above, the vessel operator would be required to complete and sign a Released Catch Affidavit providing information about where, when, and why the net was released, as well as a good-faith estimate of the total weight of fish caught on the tow and weight of fish released. The Released Catch Affidavit must be submitted within 48 hours of completion of the fishing trip.

• Following the release of the net for one of the three exemptions specified above, the vessel would be required to exit the River Herring Monitoring/Avoidance Area. The vessel may continue to fish but may not fish in the River Herring Monitoring/Avoidance Areas for the remainder of the trip.

8dLong. If a longfin squid-permitted vessel is fishing in a River Herring Monitoring/Avoidance Areas identified in this alternative with an observer onboard, vessels would be required to pump/haul aboard all fish from the net for inspection and sampling by the observer. Vessels that do not pump fish would be required to bring all fish aboard the vessel for inspection and sampling by the observer. Unless specific conditions are met (see below), vessels would be prohibited from releasing fish from the net, transferring fish to another vessel that is not carrying a NMFS-approved observer, or otherwise discarding fish at sea, unless the fish have first been brought aboard the vessel and made available for sampling and inspection by the NMFS-approved observer.

• Vessels may make short test tows in the area to check the abundance of target and non-target species without pumping the fish on board if the net is reset without releasing the contents of the test tow. In this circumstance, catch from the test tow would remain in the net and would be available to the observer to sample when the subsequent tow is pumped out.

• Fish that have not been pumped aboard may be released if the vessel operator finds that:
 1. pumping the catch could compromise the safety of the vessel;
 2. mechanical failure precludes bringing some or all of the catch aboard the vessel; or
 3. spiny dogfish have clogged the pump and consequently prevent pumping of the rest of the catch.

• If the net is released for any of the reasons stated above, the vessel operator would be required to complete and sign a Released Catch Affidavit providing information about where, when, and why the net was released, as well as a good-faith estimate of the total weight of fish caught on the tow and weight of fish released. The Released Catch Affidavit must be submitted within 48 hours of completion of the fishing trip.
Following the release of the net for one of the three exemptions specified above, the vessel would be required to exit the River Herring Monitoring/Avoidance Area. The vessel may continue to fish but may not fish in the River Herring Monitoring/Avoidance Areas for the remainder of the trip.

8eMack. Vessels possessing a federal mackerel permit would not be able to retain, possess or transfer more than an incidental level of fish (20,000 pounds mackerel) while in a River Herring Protection Area unless no mesh smaller than 5.5 inches is onboard the vessel.

8eLong. Vessels possessing a federal moratorium longfin squid permit would not be able to retain, possess or transfer more than an incidental level of fish (2,500 pounds longfin squid) while in a River Herring Protection Area unless no mesh smaller than 5.5 inches is onboard the vessel.

8f. Make the above measures 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong only effective if/when they are effective for Atlantic Herring vessels, including if they become effective in the middle of a season because a catch-cap based trigger is reached by the Atlantic Herring fleet under a trigger established by Amendment 5 to the Atlantic Herring FMP.

Summary of Biological Impact Analysis

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere with the action alternatives but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to these alternatives, it would not be expected that over time the new areas would be substantially different than the old areas in terms of non-target impacts (including RH/S) given the wide and variable distribution of most non-target species including RH/S. RH/S catch may be decreased inside the hotspot but increase outside the hotspot. This is consistent with the findings of the FMAT analyses detailed in Appendices 1 and 2.

Summary of Socio-Economic Impact Analysis

A low negative impact would be expected compared to the no-action alternative. Given the complexity of fishermen’s responses to regulations and given the protection areas are relatively small, the effects may be negligible for most fishermen in most years compared to the no-action alternative (they will fish other areas around the hotspots). However, near-shore fishermen near the closed areas may be disproportionately impacted by closures around their home port.
2.2 Impacts Summaries

Section 2.2 summarizes the impacts of the alternatives. First the impacts of the preferred alternatives are summarized by the two purposes of the Amendment and then impacts of all considered alternatives are summarized qualitatively in tabular form.

Purpose A: "Implement Effective RH/S Catch Monitoring" – Purpose A is to consider alternatives that would implement monitoring programs for the Mackerel, Squid, and Butterfish (MSB) fisheries that are sensitive enough and robust enough to the spatial and temporal variability of RH/S distributions so that good RH/S catch estimates can be generated.

The preferred alternatives in alternative sets 1-5 together are designed to be integrated with existing monitoring and reporting requirements to create an overall complementary system that provides accurate data on the catch of RH/S in the mackerel and longfin squid fleets. Thus the preferred alternatives cannot be compared to each other in terms of one being more or less important for RH/S conservation since they will function as a unit. Each preferred alternative will add incremental information about RH/S catch and thus provide incremental benefits in terms of better data to perform assessments and guide management.

The preferred alternatives would: require weekly VTR reporting for all MSB vessel permits (1c); require a 48-hour pre directed mackerel trip notification (1d48); require VMS and daily VMS catch reporting for mackerel and longfin squid vessels (1eMack, 1eLong, 1fMack, and 1fLong); and require a 6-hour pre-landing notification via VMS for mackerel landings greater than 20,000 pounds (1gMack). The preferred alternatives would also require federal MSB dealers to weigh all landings of mackerel over 20,000 pounds (2d) and longfin squid over 2,500 pounds (2f) or document why they cannot weight landings (2g). (If all fish are not weighed separately, dealers would have to document with each transaction how they estimate the relative composition of mixed catches.). The preferred alternatives would also require for mackerel and longfin-butterfish permits that: reasonable assistance be provided to observers (3b); notice of haul-back or pumping be provided to observers (3c); one observer is provided for each vessel on pair-trawl operations whenever possible (3d). Unless safety, mechanical, or spiny dogfish issues make it inappropriate, the same vessels would not be able to release hauls of fish ("slippage") prior to observer documentation, and catch affidavits would have to be completed for any pre-observed net release (3j). For mackerel limited access vessels, there would also be a fleet-wide cap of 10 non-emergency (safety, mechanical, spiny dogfish) slippages after which further non-emergency slippages would require a vessel to terminate their trip (3l). The Council also made implementation of additional portside monitoring and catch avoidance based on portside monitoring frameworkable (4f). The Council recommended 100% observer coverage of mid-water trawl (MWT) mackerel trips (5b4) as well as tiered coverage levels for small mesh bottom trawl mackerel trips (100% for Tier 1, 50% for Tier 2, and 25% for Tier 3) (5c4) along with requiring mackerel vessels to pay $325 when they carry observers to help fund the desired coverage levels (5f). Coverage levels would be re-evaluated after 2 years (5h).
Taken together, and when combined with existing reporting and monitoring requirements, these measures should allow for accurate estimates of RH/S catch in the MSB fisheries (most RH/S catch in the MSB fisheries occurs in the mackerel fishery). While not directly impacting RH/S stocks, better catch data should help improve RH/S assessments and management indirectly. All of these alternatives should have relatively small impacts on the MSB fisheries except the observer coverage provisions, which could add $325/day in costs for mackerel fishing.

Purpose B: "Reduce RH/S Catch" – Purpose B is to consider alternatives to reduce catch of RH/S in the MSB fisheries. The MSA requires Councils to minimize discards to the extent practicable (Section 301 – National Standard 9) and provides discretionary authority to “include management measures in the plan to conserve…non-target species…considering the variety of ecological factors affecting fishery populations” (Section 303(b)(12)).

Alternative sets 6, 7, and 8 examined measures to reduce catch of RH/S in the mackerel and longfin squid fisheries. Since RH/S catch is greatest in the mackerel fishery, and current analysis suggested that area-based could not be determined to be an effective measure, the Council recommended mortality caps for RH/S on the mackerel fishery (6b and 6c) and added future mortality caps and hotspot closures as frameworkable actions (6f and 8b respectively). The impact of 6b and 6c will depend on what the cap is ultimately set at, and the cap will be set and analyzed through the annual specifications process. If a cap is set relatively high then status-quo fishing should continue and status-quo impacts on RH/S would also likely continue. If a cap is set relatively low then less fishing may occur, which would mean less mortality related to fishing but the overall impact on RH/S stocks is unquantifiable (could be unsubstantial or substantial) given the information presented in the most recent assessment.

Overview of Measures Table

Table 8 provides a concise general summary of the measures and their anticipated effects. The combined effects of the preferred alternatives related to the purposes of this Amendment are described above. For all Alternative Sets (1-8) and all valued ecosystem components (VECs), the first alternative ("a") equals no-action, which is what is predicted to happen with the status quo management measures. Subsequent alternatives are the action alternatives and diverge from the status quo management measures as described in Section 5. The impact analysis focuses on the valued ecosystem components (VECs) that were identified for Amendment 14 and described in detail in Section 6.0 of this document. These VECs include (see next page):
VECs:

1. Managed Resources
 - Atlantic mackerel stock
 - *Illex* stock
 - Longfin squid stock
 - Atlantic butterfish stock

2. Non-target species
 - Non-Target species include river herrings (blueback and alewife) and shads (American and hickory), collectively referred to as RH/S. Given the lack of information on how these species travel and mix in the ocean, different impacts are generally not discernible between these species but are noted where appropriate (for example in caps that are placed on particular species).

3. Habitat including EFH for the managed resources and non-target species

4. Endangered and other protected resources

5. Human Communities

While in previous MSB FMP EISs the impacts from all alternatives are grouped together for each VEC, with the large number of alternatives in this amendment (about 80), the result would that one would start with managed resources, have ~80 associated impacts, then have ~80 impacts for non-target species, and so on with the other VECs. That format seemed to lead to a disconnect in evaluating each alternative in terms of its overall positive and negative impacts across different VECs. As a result, the impact analysis in this EIS proceeds alternative by alternative with impacts for each VEC described for a given alternative before moving on to the next alternative’s impacts.

In these tables, a variety of terms (e.g. positive or negative) have specific meanings for each VEC and are described below. These are the same as are used in the impact analysis section, Section 7.

Managed Species, Non-Target Species, Protected Species:

Note: Often impacts are indirect in that an action may change overall effort, which would decrease impacts if effort goes down or increase impacts if effort goes up.

Neutral/negligible: actions that are expected to have no discernible impact on stock/population size. The table below uses just “negligible” to save space.

Positive: actions that increase stock/population size

Negative: actions that decrease stock/population size

Habitat:

Note: Often impacts are indirect in that an action may change overall effort, which would decrease impacts if effort goes down or increase impacts if effort goes up.
Neutral/negligible: actions that are expected to have no discernible impact on habitat. The table below uses just “negligible” to save space.
Positive: actions that improve the quality or reduce disturbance of habitat
Negative: actions that degrade the quality or increase disturbance of habitat

Human Communities:
Neutral/negligible: actions that are expected to have no discernible impact on human communities. The table below uses just “negligible” to save space.
Positive: actions that increase revenue and well-being of fishermen and/or associated businesses
Negative: actions that decrease revenue and well-being of fishermen, associated businesses, or other interested parties.
Mixed: The action would create benefits for some and costs for others. Generally there are costs to MSB fishery participants but potential benefits to other fishermen (commercial or recreational) or other interested parties who value MSB or RH/S resources. Since the linkages between catches in MSB fisheries and RH/S resources is not known, it is generally uncertain regarding which would be greater, costs to current MSB participants or benefits to other interested parties.

Impact Qualifiers:
The following qualifiers are also used in the impact analysis:

Low (as in low positive or low negative): to a lesser or small degree
High (as in high positive or high negative) to a greater or large degree
Potentially: A relatively higher degree of uncertainty is associated with the impact. Often this qualifier is used when an action may lead to better data, but future actions would have to actually use that data in decision making in order for there to be a concrete benefit.

If impacts are expected to be isolated to a particular species, usually either mackerel, longfin squid, Illex squid, butterfish, or river herrings and shads (RH/S) then this fact will be noted as well.

To some the extent the operation of the MSB fisheries may currently be negatively affecting the directed fisheries, RH/S stocks, other non-target species, habitat, and protected resources compared to if there was no fishery. However the fisheries exist currently, so their continued operation under “no-action” would result in similar impacts as occur presently. As such, all comparisons in Table 8 are in reference to changes from the no-action alternative but Section 7 also discusses how the no-action alternative may compare to the action alternatives.
<table>
<thead>
<tr>
<th>Management Measures</th>
<th>Managed resource</th>
<th>Non-target species Esp. RH/S</th>
<th>Habitat including EFH</th>
<th>Protected Resources</th>
<th>Human Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a No Action</td>
<td>Neutral - Status Quo</td>
</tr>
<tr>
<td>1b Mack mackerel weekly VTRs</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>1b Long longfin weekly VTRs</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>1c MSB weekly VTRs</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>1d 48hr notice for mackerel trips</td>
<td>Potentially Low Positive - better observer placement</td>
<td>Positive - better observer placement</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Potentially Positive - better observer placement</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>1d 72hr notice for mackerel trips</td>
<td>Potentially Low Positive - better observer placement</td>
<td>Positive - better observer placement</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Potentially Positive - better observer placement</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>1e Mack VMS for mackerel vessels</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Potentially Positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Potentially Positive - supports area closures</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>1e Long VMS for longfin vessels</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Potentially Positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Potentially Positive - supports area closures</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>1f Mack VMS reporting for mackerel</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>1f Long VMS reporting for longfin</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>1g Mack 6hr pre-land VMS for mackerel</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Potentially Positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>1g Long 6hr pre-land VMS for longfin</td>
<td>Potentially Low Positive - better monitoring</td>
<td>Potentially Positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>Management Measures</td>
<td>Valued Ecosystem Component (VEC) Impacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Managed resource</td>
<td>Non-target species Esp. RH/S</td>
<td>Habitat including EFH</td>
<td>Protected Resources</td>
<td>Human Communities</td>
</tr>
<tr>
<td>2a No Action</td>
<td>Neutral - Status Quo</td>
</tr>
<tr>
<td>2b Vessel SAFIS Confirmation</td>
<td>Low positive - better record keeping</td>
<td>Low positive - better record keeping</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Potentially Low Positive - better record keeping</td>
</tr>
<tr>
<td>2c mackerel catch weighing with annual sorting documentation</td>
<td>Low positive - better monitoring</td>
<td>Low positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>2d mackerel catch weighing with sort doc for each transaction</td>
<td>Low positive - better monitoring</td>
<td>Low positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>2e longfin catch weighing with annual sort doc</td>
<td>Low positive - better monitoring</td>
<td>Low positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>2f longfin catch weighing with sort doc for each transaction</td>
<td>Low positive - better monitoring</td>
<td>Low positive - better monitoring</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>2g Allow volume to weight conversions</td>
<td>Neutral - equivalent to status quo</td>
</tr>
<tr>
<td>Management Measures</td>
<td>Managed resource</td>
<td>Non-target species Esp. RH/S</td>
<td>Habitat including EFH</td>
<td>Protected Resources</td>
<td>Human Communities</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>3a No action</td>
<td>Neutral - Status Quo</td>
</tr>
<tr>
<td>3B reasonable assistance</td>
<td>Low Positive - improves observer data</td>
<td>Low Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Low Positive - improves observer data</td>
<td>Negligible</td>
</tr>
<tr>
<td>3c pump/haul notice</td>
<td>Low Positive - improves observer data</td>
<td>Low Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Low Positive - improves observer data</td>
<td>Negligible</td>
</tr>
<tr>
<td>3d paired observers</td>
<td>Low Positive - improves observer data</td>
<td>Low Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Low Positive - improves observer data</td>
<td>Negligible</td>
</tr>
<tr>
<td>3e slippage reports</td>
<td>Low Positive - improves observer data</td>
<td>Low Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible</td>
</tr>
<tr>
<td>3f no discards before sampling mackerel</td>
<td>Low Positive - improves observer data</td>
<td>Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>3g no discards before sampling longfin</td>
<td>Positive - improves observer data</td>
<td>Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>3h 1 slip termination</td>
<td>Positive - improves observer data</td>
<td>Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>3i 2 slip termination</td>
<td>Positive - improves observer data</td>
<td>Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>3j Closed Area 1 Rules</td>
<td>Positive - improves observer data</td>
<td>Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>3k 5 annual mackerel slips then trip termination for if more</td>
<td>Low Positive - improves observer data</td>
<td>Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>3l 10 annual mackerel slips then trip termination for if more</td>
<td>Low Positive - improves observer data</td>
<td>Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>Management Measures</td>
<td>Managed resource</td>
<td>Non-target species Esp. RH/S</td>
<td>Habitat including EFH</td>
<td>Protected Resources</td>
<td>Human Communities</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>3m 5 trimester longfin slips then trip termination for if more</td>
<td>Positive - improves observer data</td>
<td>Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>3n 10 trimester longfin slips then trip termination for if more</td>
<td>Positive - improves observer data</td>
<td>Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>3o repeat observers for canceled trips</td>
<td>Low Positive - improves observer data</td>
<td>Low Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>3p individual vessel slippage quota</td>
<td>Potential Positive - improves observer data</td>
<td>Potential Positive - improves observer data</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>Management Measures</td>
<td>Valued Ecosystem Component (VEC) Impacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Managed resource</td>
<td>Non-target species Esp. RH/S</td>
<td>Habitat including EFH</td>
<td>Protected Resources</td>
<td>Human Communities</td>
</tr>
<tr>
<td>4a No Action</td>
<td>Neutral - Status Quo</td>
</tr>
<tr>
<td>4b Port-side sampling for mackerel landings</td>
<td>Negligible - landings already well monitored</td>
<td>Positive - better landings data for non-targets</td>
<td>Negligible - fishery mostly uses MWT</td>
<td>Potentially positive - may lower effort.</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>4c Portside sampling for longfin landings</td>
<td>Negligible - landings already well monitored</td>
<td>Negligible - most non-target catch is discarded at set</td>
<td>Potentially positive - may lower effort.</td>
<td>Potentially positive - may lower effort.</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>4d Tier 3 mackerel hold certification</td>
<td>Negligible - landings already well monitored</td>
<td>Potentially low Positive - better data for non-targets</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>4e Longfin hold certification</td>
<td>Negligible - landings already well monitored</td>
<td>Potentially positive - better data for non-targets</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Negligible - no substantial change in effort expected</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>4f Sust. Fish. Coalition frameworkable</td>
<td>NA - allows future action</td>
</tr>
<tr>
<td>Management Measures</td>
<td>Managed resource</td>
<td>Non-target species Esp. RH/S</td>
<td>Habitat including EFH</td>
<td>Protected Resources</td>
<td>Human Communities</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>5a No action</td>
<td>Neutral - Status Quo</td>
</tr>
<tr>
<td>5b Observer coverage for mackerel MWT</td>
<td>Potentially low positive - better discard data</td>
<td>Positive - better incidental catch data</td>
<td>Negligible (positive if industry has to pay which would decrease effort)</td>
<td>Negligible (positive if industry has to pay which would decrease effort)</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>5c Observer coverage for mackerel SMBT</td>
<td>Potentially low positive - better discard data</td>
<td>Positive - better incidental catch data</td>
<td>Negligible (positive if industry has to pay which would decrease effort)</td>
<td>Negligible (positive if industry has to pay which would decrease effort)</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>5d Observer coverage for longfin SMBT</td>
<td>Positive - better discard catch data</td>
<td>Positive - better incidental catch data</td>
<td>Negligible (positive if industry has to pay which would decrease effort)</td>
<td>Negligible (positive if industry has to pay which would decrease effort)</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>5e Strata-Fleet-Based Alternatives</td>
<td>Positive - better discard catch data</td>
<td>Positive - better incidental catch data</td>
<td>Negligible (positive if industry has to pay which would decrease effort)</td>
<td>Negligible (positive if industry has to pay which would decrease effort)</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>5f Industry Funding</td>
<td>Negligible but tied to 5b-5e above.</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>5g phased industry funding</td>
<td>Negligible but tied to 5b-5e above.</td>
<td>Mixed (positive and negative impacts for different interests)</td>
</tr>
<tr>
<td>5h 2-year coverage re-evaluation</td>
<td>NA - describes future action</td>
</tr>
</tbody>
</table>
Managed resource
- Neutral - Status Quo

Non-target species
- Esp. RH/S
- Potentially low positive - lower catch depending on cap amount
- Potentially low positive - lower catch depending on cap amount
- Potentially positive - lower effort depending on cap amount
- Potentially positive - lower effort depending on cap amount
- Potentially positive - lower effort depending on cap amount

Habitat including EFH
- Negligible - fishery mostly uses MWT
- Negligible - fishery mostly uses MWT
- Potentially positive - lower effort depending on cap amount
- Potentially positive - lower effort depending on cap amount
- Potentially positive - lower effort depending on cap amount
- Potentially positive - lower effort depending on cap amount

Protected Resources
- Potentially positive - lower catch
- Potentially positive - lower catch depending on cap amount
- Potentially positive - lower effort depending on cap amount
- Potentially positive - lower effort depending on cap amount
- Potentially positive - lower effort depending on cap amount
- Potentially positive - lower effort depending on cap amount

Human Communities
- Mixed (positive and negative impacts for different interests)
- Mixed (positive and negative impacts for different interests)
- Mixed (positive and negative impacts for different interests)
- Mixed (positive and negative impacts for different interests)
- Mixed (positive and negative impacts for different interests)
- Mixed (positive and negative impacts for different interests)
<table>
<thead>
<tr>
<th>Management Measures</th>
<th>Valued Ecosystem Component (VEC) Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Managed resource</td>
</tr>
<tr>
<td>7a No Action</td>
<td>Neutral - Status Quo</td>
</tr>
<tr>
<td>7b Mack Closed Area Mackerel</td>
<td>Potentially low positive - lower effort/catch</td>
</tr>
<tr>
<td>7b Long Closed Area Longfin</td>
<td>Potentially low positive - lower effort/catch</td>
</tr>
<tr>
<td>7c Mack observer area mackerel</td>
<td>Potentially low positive (better observer data and/or lower effort)</td>
</tr>
<tr>
<td>7c Long observer area longfin</td>
<td>Potentially low positive (better observer data and/or lower effort)</td>
</tr>
<tr>
<td>7d Trigger option</td>
<td>Tied to 7b-7c. Would reduce impacts (positive or negative) because those measures would only be in place for part of year after trigger was reached.</td>
</tr>
<tr>
<td>7e Area Updating</td>
<td>Negligible - allows future action</td>
</tr>
</tbody>
</table>
Valued Ecosystem Component (VEC) Impacts

<table>
<thead>
<tr>
<th>Management Measures</th>
<th>Managed resource</th>
<th>Non-target species Esp. RH/S</th>
<th>Habitat including EFH</th>
<th>Protected Resources</th>
<th>Human Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a No action</td>
<td>Neutral - Status Quo</td>
</tr>
<tr>
<td>8b make hotspots frame-workable</td>
<td>NA - allows future action</td>
</tr>
<tr>
<td>8c Mack Observers in Monitoring/Avoidance Area</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>NA - allows future action</td>
</tr>
<tr>
<td>8d Mack Closed Area 1 rules w/exit for slipping</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>NA - allows future action</td>
</tr>
<tr>
<td>8e Mack closure in protection area</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>NA - allows future action</td>
</tr>
<tr>
<td>8f TIE alternative implementation to Atl Herring</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>Negligible - hotspots are too small given geo-temporal variability of fish and fishing</td>
<td>NA - allows future action</td>
</tr>
</tbody>
</table>

Note: The FMAT analysis (see Appendices 1 & 2) found that the small-area based “hotspot” alternatives considered in this Alternative Set are likely to just redistribute effort and that given the widespread distribution of RH/S the end result could be to increase impacts on RH/S just as easily as reducing impacts on RH/S and that one would not be able to predict the actual outcome.
2.3 Areas of Controversy

Many measures considered in this document have been controversial at least at some point in the development of the Amendment. The controversy generally hinges on three primary factors. They are: 1) the relatively high potential cost of some of the alternatives (especially industry-funded observer coverage [Set 5], mortality caps [Set 6] and large-scale area-based restrictions [Set 7]); 2) the concern by some segments of the public about the impacts of large scale trawling on river herring and shad populations; and 3) the lack of firm science (i.e. high uncertainty) about either the coast-wide populations of river herring and shad or about the impact on those populations from at-sea trawling versus other sources of mortality (natural or human-caused). The decision to effectively move consideration of whether to directly manage RH/S into Amendment 15 to the MSB FMP also caused some controversy but the Council ultimately decided a separate Amendment was the best vehicle to address the complicated issues raised by potentially adding RH/S as directly-managed species.

2.4 Considered but Rejected Management Actions

1. The Council decided not to add a provision for annual forage set-asides for mackerel, squids, and butterfish. Instead, the Council noted that the recent Omnibus Annual Catch Limit Amendment already allows harvest reductions due to forage concerns and concluded that formal set-asides would be better considered after the Council develops ecosystem level goals and objectives that are informed by the ongoing work of the ecosystem subcommittee of the Scientific and Statistical Committee.

2. The Council considered including consideration of catch shares for the squid fisheries during the scoping process but concluded that it would be more effective to focus Amendment 14 on river herring and shad issues. Also, there was strong public comment against including squid catch shares at the current time.

3. The Council considered requiring 6 hour pre-landing notification via phone to land more than 20,000 pounds of mackerel so as to facilitate quota monitoring. This was removed because NMFS is trying to phase out phone notifications of this kind.

4. The Council considered requiring 6 hour pre-landing notification via phone to land more than 2,500 pounds of longfin squid so as to facilitate quota monitoring. This was removed because NMFS is trying to phase out phone notifications of this kind.

5. The Council considered requiring daily electronic reporting by MSB-permitted dealers so as to facilitate quota monitoring and cross checking with other data sources. This was removed because other options seemed equally effective and the infrastructure for 24hr reporting is burdensome for both NMFS and dealers.

6. The Council considered requiring 48 hour electronic reporting by MSB-permitted dealers so as to facilitate quota monitoring and cross checking with other data sources. This was removed
because other options seemed equally effective and the infrastructure for 48hr reporting is burdensome for both NMFS and dealers.

7. The Council considered requiring 72 hour electronic reporting by MSB-permitted dealers so as to facilitate quota monitoring and cross checking with other data sources. This was removed because other options seemed equally effective and the infrastructure for 42hr reporting is burdensome for both NMFS and dealers.

8. The Council considered requiring trip termination following 3 slipped hauls on an observed trip so as to minimize slippage events. The goal is to minimize slippage events. This was removed because other options seemed equally effective (termination after 1 or 2 hauls) and having 3 slipped hauls on one trip would be a rare event.

9. The Council considered using mesh changes to reduce the catch of river herrings and shads but concluded such measures were not feasible due to the lack of trawl mesh selectivity for mackerel, river herrings, and shads. Selectivity information would be necessary to evaluate both potential benefits to river herrings and shads and potential costs to the relevant directed fisheries.

10. Some measures under consideration address slippage where the contents of a net on an observed haul on an observed trip are released in the water. In these cases the observer cannot sample the released catch. Some alternatives considered requiring ¼ of the catch to be pumped on board but these were rejected because a) catch may be patchy and only sampling ¼ of the net

11. To obtain information on fish that may remain in the net, the Council conserved alternatives that would require nets to be periodically brought aboard after pumping for sampling. These alternatives were rejected because the observer program had already begun such sampling at higher rates than those considered in the document. An alternative was also added to prohibit any discarding of un-sampled fish, even operational discards.

12. To consider broader RH/S conservation and management issues, the DEIS considered adding any or all RH/S species as directly managed “stocks in the fishery” within the MSB FMP. The Council considered adding none, one, or any combination of the RH/S species as “stocks” in the fishery. Selecting any of the action alternatives would have resulted in the Council immediately beginning another amendment to add all of the required Magnuson provisions for an FMP. Based on guidance from NMFS and NOAA General Counsel, the Council chose to instead develop a separate amendment, Amendment 15, which would fully consider the complicated issues associated with potentially commencing Council management of RH/S. Further details are available in the DEIS, available at: http://www.nero.noaa.gov/regs/ under the 2012 “past action link,” but generally the DEIS found that direct Council management impacts to RH/S would be expected to be positive for all relevant RH/S species and in approximately the same fashion but to an unknown degree given the various sources of RH/S mortality and limitations on RH/S productivity. Positive RH/S impacts were primarily related to: 1) potential additional federal support of RH/S management (assessments, FMP and specifications review, etc.); 2) additional coordination of conservation activities across agencies; 3) Essential Fish Habitat (EFH) designation and consultations; and 4) implementation of Annual Catch Limits (ACLs) and Accountability Measures (AMs).
The two key questions that will have to be answered by the Council in Amendment 15 are: 1) Is the current management framework is sufficient to conserve RH/S stocks; and 2) Can federal management by the Council substantially improve management of RH/S. The uncertainty regarding the current factors causing RH/S populations to remain in depressed states means that it will be difficult to identify specific causes and link remedies to specific outcomes. Given this, the extent of benefits from adding RH/S as stocks in the fishery will be difficult to quantify even though impacts are likely to be positive, but that will be the task of Amendment 15. The development of Amendment 15 has begun and may be tracked at the Council website: http://www.mafmc.org/, and then clicking through to the Mackerel-Squid-Butterfish section or by contacting Jason Didden at jddiden@mafmc.org (302-526-5254).

2.5 Regulatory Basis for the Amendment

Amendment 14 was developed in accordance with the Magnuson-Stevens Fishery Conservation and Management Act (MSA) and the National Environmental Policy Act (NEPA), the former being the primary domestic legislation governing fisheries management in the U.S. Exclusive Economic Zone (EEZ). The MSA requires Councils to minimize discards to the extent practicable (Section 301 – National Standard 9) and provides discretionary authority to “include management measures in the plan to conserve...non-target species...considering the variety of ecological factors affecting fishery populations” (Section 303(b)(12). How these provisions apply to RH/S catch in the mackerel and Longfin Squid fisheries is the primary concern of Am14 (see purposes A and B above). The MSA also provides for Councils to submit new fishery management plans for fish stocks, including anadromous species (see purpose C above).

NEPA requires federal agencies to incorporate environmental considerations in their planning and decision-making through a systematic interdisciplinary approach. Specifically, all federal agencies are to prepare detailed statements assessing the environmental impact of and alternatives to major federal actions significantly affecting the environment. These statements are commonly referred to as environmental impact statements (EISs). This document constitutes the EIS for the management measures currently under consideration and was prepared by the Council in consultation with the National Marine Fisheries Service (NMFS).

This document also addresses the requirements of the Marine Mammal Protection Act (MMPA), the Endangered Species Act (ESA), the Regulatory Flexibility Act, the Administrative Procedure Act, the Paperwork Reduction Act, the Coastal Zone Management Act, the Information Quality Act, and Executive Orders 13132 (Federalism), 12898 (Environmental Justice), 12866 (Regulatory Planning), and 13158 (Marine Protected Areas). These other applicable laws and Executive Orders help ensure that in developing an FMP and/or FMP amendment, the Council considers the full range of alternatives and their expected impacts on the marine environment, living marine resources, and the affected human environment. This integrated document contains all required elements for these laws and executive orders including MSA and NEPA, and the information to ensure consistency with the applicable laws and executive orders.
3.0 LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Allowable Biological Catch</td>
</tr>
<tr>
<td>ACL</td>
<td>Annual Catch Limit</td>
</tr>
<tr>
<td>ACT</td>
<td>Annual Catch Target</td>
</tr>
<tr>
<td>AM</td>
<td>Accountability Measure</td>
</tr>
<tr>
<td>ASMFC</td>
<td>Atlantic States Marine Fisheries Commission</td>
</tr>
<tr>
<td>ATGTRT</td>
<td>Atlantic Trawl Gear Take Reduction Team</td>
</tr>
<tr>
<td>CEA</td>
<td>Cumulative Effects</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>C.V.</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>DAH</td>
<td>Domestic Annual Harvest</td>
</tr>
<tr>
<td>DAP</td>
<td>Domestic Annual Processing</td>
</tr>
<tr>
<td>DPS</td>
<td>Distinct Population Segment</td>
</tr>
<tr>
<td>DEIS</td>
<td>Draft Environmental Impact Statement</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EEZ</td>
<td>Exclusive Economic Zone</td>
</tr>
<tr>
<td>EFH</td>
<td>Essential Fish Habitat</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>FMAT</td>
<td>Fishery Management Action Team</td>
</tr>
<tr>
<td>FMP</td>
<td>Fishery Management Plan</td>
</tr>
<tr>
<td>FR</td>
<td>Federal Register</td>
</tr>
<tr>
<td>FEIS</td>
<td>Final Environmental Impact Statement</td>
</tr>
<tr>
<td>ICES</td>
<td>International Council for the Exploration of the Sea</td>
</tr>
<tr>
<td>ICNAF</td>
<td>International Convention of the Northwest Atlantic Fisheries</td>
</tr>
<tr>
<td>IOY</td>
<td>Initial Optimum Yield</td>
</tr>
<tr>
<td>ITQ</td>
<td>Individual Transferrable Quota</td>
</tr>
<tr>
<td>JV</td>
<td>Joint Venture</td>
</tr>
<tr>
<td>MAFMC</td>
<td>Mid-Atlantic Fishery Management Council</td>
</tr>
<tr>
<td>MMPA</td>
<td>Marine Mammal Protection Act</td>
</tr>
<tr>
<td>MSA</td>
<td>Magnuson-Stevens Fishery Conservation and Management Act</td>
</tr>
<tr>
<td>MSB</td>
<td>Mackerel, Squid, and Butterfish</td>
</tr>
<tr>
<td>MSY</td>
<td>Maximum Sustainable Yield</td>
</tr>
<tr>
<td>MT (or mt)</td>
<td>metric tons</td>
</tr>
<tr>
<td>MWT</td>
<td>Mid Water Trawl</td>
</tr>
<tr>
<td>NE</td>
<td>New England</td>
</tr>
<tr>
<td>NEFMC</td>
<td>New England Fishery Management Council</td>
</tr>
<tr>
<td>NEFOP</td>
<td>Northeast Fishery Observer Program</td>
</tr>
<tr>
<td>NEFOP</td>
<td>Northeast Fishery Observer Program</td>
</tr>
<tr>
<td>NEFSC</td>
<td>Northeast Fisheries Science Center</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NK</td>
<td>Not classified</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service (NOAA Fisheries)</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>RFF</td>
<td>reasonably foreseeable future</td>
</tr>
<tr>
<td>RFFA</td>
<td>Reasonably Foreseeable Future Actions</td>
</tr>
<tr>
<td>RH/S</td>
<td>River Herring and Shad</td>
</tr>
<tr>
<td>RSA</td>
<td>Research Set-Aside</td>
</tr>
<tr>
<td>RV</td>
<td>Research Vessel</td>
</tr>
<tr>
<td>SA</td>
<td>Some Activity</td>
</tr>
<tr>
<td>SARC</td>
<td>Stock Assessment Review Committee</td>
</tr>
<tr>
<td>SAW</td>
<td>Stock Assessment Workshop</td>
</tr>
<tr>
<td>SBRM</td>
<td>Standardized Bycatch</td>
</tr>
<tr>
<td>SBRM</td>
<td>Standardized Bycatch</td>
</tr>
<tr>
<td>SMBT</td>
<td>Small Mesh Bottom Trawl</td>
</tr>
<tr>
<td>SSC</td>
<td>Scientific and Statistical Committee</td>
</tr>
<tr>
<td>SAW</td>
<td>Stock Assessment Workshop</td>
</tr>
<tr>
<td>SAW</td>
<td>Stock Assessment Workshop</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>VEC</td>
<td>Valued Ecosystem Component</td>
</tr>
<tr>
<td>VMS</td>
<td>Vessel Monitoring System</td>
</tr>
<tr>
<td>VTR</td>
<td>Vessel Trip Report</td>
</tr>
</tbody>
</table>
4.0 INTRODUCTION AND BACKGROUND

4.1 PROBLEMS/NEEDS FOR ACTION AND CORRESPONDING PURPOSES AND BACKGROUND

Table 9 summarizes the Problems/Needs for Action and corresponding purposes. The "Problem/Need for Action" describes "Why is the Council taking a given action?" For each Problem/Need for Action there is a "Corresponding Purpose," which is how the Council proposes to address the Problem/Need for Action. Additional details on the purposes are provided after the table. The alternatives described in this document provide a reasonable range of specific tools to implement the purpose, i.e. solve the problem.

Table 9. Summary of the problems/needs for actions and purposes.

<table>
<thead>
<tr>
<th>PROBLEM/NEED FOR ACTION</th>
<th>CORRESPONDING PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose A</td>
<td>Implement Effective RH/S Monitoring</td>
</tr>
<tr>
<td>There is insufficient Monitoring of RH/S catch</td>
<td></td>
</tr>
<tr>
<td>Purpose B</td>
<td>Reduce RH/S Catch</td>
</tr>
<tr>
<td>catches may be negatively impacting RH/S</td>
<td></td>
</tr>
<tr>
<td>Purpose C</td>
<td>Consider RH/S NS1 Stock Issues</td>
</tr>
<tr>
<td>Insufficient management framework for RH/S</td>
<td></td>
</tr>
</tbody>
</table>

4.1.A Purpose A - Implement Effective RH/S Monitoring

While current levels of monitoring, especially at-sea observer coverage, document that RH/S are caught in the mackerel and longfin squid fisheries, the current relatively low monitoring levels do not allow for management to precisely understand how much RH/S different fisheries are catching. This makes it difficult to determine what, if any actions would be appropriate by the Council. Accordingly, this Amendment considers a variety of alternatives to improve monitoring.

The state of knowledge regarding RH/S catch given the current information is contained in Appendix 2. Given the purpose of Amendment 14, new analyses for Amendment 14 centered on River Herrings and Shads. The methods, detailed in Appendix 2, utilized ratios of observed caught RH/S to total observed fish kept (fish to be landed). These ratios were then applied to landings by year/area/quarter/gear/mesh strata to estimate RH/S catch for each strata. A similar procedure has become standard to estimate discards, but in that case only discards are used to establish the ratio. These strata were used to eliminate the ambiguity (e.g. double counting trips that land multiple species or missing directed effort that failed to catch the intended target) that
results from attempting to sort observer data by “directed trips” and is further discussed in Appendix 3, which describes the FMAT’s recommendations upon reviewing the analysis. The detailed results of these analyses are also provided in Appendix 2 and summarized in Section 6.3.

Readers who participated in the process may note that the total catch estimates in Appendix 2 differ from some preliminary calculations discussed in early technical meetings. The differences are accounted for by three additional stratifications in the final analysis: 1) single and pair trawl estimates were combined in the early versions and estimated separately in the final analysis; and 2) bottom trawl estimates were combined in the early versions and estimated separately by mesh size in the final analysis; and 3) gillnet estimates were combined in the early versions and estimated separately by mesh size in the final analysis. The stratifications are described in detail in Appendix 2 but the general idea is that activity by like groups of gears should be estimated together, and there were differential catch rates between the selected stratifications.

4.1.B Purpose B: Reduce RH/S Catch

While acknowledging substantial uncertainty, the figures used by the council to develop Amendment 14 (see Appendix 2) are based on 2006-2010 data. The resulting estimates indicate that on average, about 960,000 pounds of river herrings and about 120,000 pounds of shads were caught in ocean intercept fisheries during each of those years. Ocean-intercept fish often are juveniles, so, if you assume five fish per pound, these numbers translate into around 5 million river herrings and 600,000 shads being caught each year on average. The data suggest that the mackerel and longfin squid fisheries account for a portion of this total catch and that the mackerel fishery may have substantial encounters with river herrings in some years.

Since there are no coast-wide stock assessments for river herrings or shads, it is not possible to determine if these catch levels are, or are not, detrimental to river herring or shad stocks. There also are concerns that single large catches of river herrings and shad could severely impact individual river runs, but very little is known about the mixing of fish runs at sea. Lack of comprehensive assessments makes it difficult to even ascertain the status of RH/S stocks. However, a variety of indicators and recent assessments suggest that many river runs have been in decline, probably for a variety of reasons.

Regardless of the status of RH/S stocks, National Standard 9 of the MSA requires that conservation and management measures, to the extent practicable, minimize discards, and to the extent that discards cannot be avoided, minimize the mortality of such discards. Both NMFS online guide to the 1996 Amendments to the MSA (available at: http://www.nmfs.noaa.gov/sfa/sfaguide/) and responses to comments in the National Standard Guidelines Final Rule published in the Federal Register in 1998 (available at: http://www.epa.gov/fedrgstr/EPA-GENERAL/1998/May/Day-01/g11471.htm) note that there is legislative history suggesting that for the sole purpose of discard/discard mortality minimization, this provision was intended so that Councils make reasonable efforts to reduce discards, but was neither intended to ban a type of fishing gear nor to ban a type of fishing or impose costs on fishermen and processors that cannot be reasonably met.
The meaning of “practicable” was also discussed in Conservation Law Foundation v. Evans, 360 F.3d 21, 27-28 (1st Cir. 2004). The court stated:

…the plaintiffs essentially call for an interpretation of the statute that equates "practicability" with "possibility," requiring NMFS to implement virtually any measure that addresses EFH and bycatch concerns so long as it is feasible. Although the distinction between the two may sometimes be fine, there is indeed a distinction. The closer one gets to the plaintiffs' interpretation, the less weighing and balancing is permitted. We think by using the term "practicable" Congress intended rather to allow for the application of agency expertise and discretion in determining how best to manage fishery resources.

NMFS has provided additional information on “practicable” in relation to discards:

What does "to the extent practicable mean"? From a National perspective, there is too much bycatch mortality in a fishery if a reduction in bycatch mortality would increase the overall net benefit of that fishery to the Nation through alternative uses of the bycatch species. In this case, a reduction in bycatch mortality is practicable and the excess bycatch mortality is a wasteful use of living marine resources. In many cases, it may be possible but not practicable to eliminate all bycatch and bycatch mortality (NMFS 2008).

While neither NMFS nor the Courts appear to have provided perfect clarity on how much discard reduction should take place, it seems clear that the biological and economic benefits and costs should be weighed. Unfortunately, it is difficult to precisely quantify many of the biological and economic benefits and costs of measures proposed in this Amendment with available scientific information. However, from a qualitative perspective, the reader will find impact information in Section 7 (also summarized in the Executive Summary).

The Magnuson-Stevens Fishery Conservation and Management Act also provides discretionary authority to “include management measures in the plan to conserve…non-target species…considering the variety of ecological factors affecting fishery populations” (Section 303(b)(12)). This would appear to provide Councils with considerable discretion to address catch of non-target species regardless of catch disposition (retained or discarded). Given the ecological forage role of RH/S these discretionary provisions would appear to be well suited for the present actions under consideration. Presumably similar evaluations of what is “practicable” would affect decision making given the discretionary nature of these provisions.

Related to the mandate to reduce discards and discretionary authority to conserve non-target species, this Amendment considers a variety of alternatives to reduce catch of RH/S. This Amendment is not the first action taken to reduce discards in the MSB fisheries - Amendment 10 implemented measures to reduce discards (especially butterfish) in the longfin squid fishery and bring the FMP into compliance with MSA requirements. These measures included an increased mesh size (from 1.875 inches to 2.125 inches) and a cap that closes the longfin squid fishery if a certain amount of butterfish is caught.
Amendment 14 continues the Council’s required efforts to minimize discards to the extent practicable and also considers discretionary provisions to reduce catch of RH/S regardless of the final disposition (discarded or retained) of that catch. After reviewing the DEIS and public comment the preferred alternatives have been deemed to be practicable measures that can be implemented.

4.1.C PURPOSE C: Consider adding RH/S as “stocks in the fishery” in the MSB FMP

Purpose C was to consider alternatives that would bring RH/S into the MSB plan as a managed stock in terms of Council management responsibilities, including annual catch limits and accountability measures, in order to improve overall RH/S management and conservation. In the Draft Environmental Impact Statement (DEIS), Alternative Set 9 considered whether to add RH/S as stocks in the fishery. Since the Council chose no action for that entire alternative set, and also has begun Amendment 15 to more fully consider the issue, the stock in the fishery issue has been moved into the “considered but rejected” section (2.4) and is summarized there. Amendment 15 will allow the Council to fully evaluate the merits of potentially adding RH/S as stocks and fisheries directly managed by the Council.
4.2 **History of FMP Development**

Management of the Atlantic mackerel, longfin squid and *Illex* squid, and butterfish fisheries began through the implementation of three separate FMPs (one each for mackerel, squid, and butterfish) in 1978. The plans were merged in 1983. Over the years a wide variety of management issues have been addressed including rebuilding, habitat conservation, discards minimization, and limited entry. The original plans, amendments and frameworks that affected management of these fisheries are summarized below.

Table 10. History of FMP Development

<table>
<thead>
<tr>
<th>Year</th>
<th>Document</th>
<th>Management Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978-1980</td>
<td>Original FMPs (3) and individual amendments</td>
<td>Established and continued management of Atlantic mackerel, squid, and butterfish fisheries</td>
</tr>
<tr>
<td>1983</td>
<td>Merged FMP</td>
<td>Consolidated management of Atlantic mackerel, squid, and butterfish fisheries under a single FMP</td>
</tr>
<tr>
<td>1984</td>
<td>Amendment 1</td>
<td>Implemented squid optimum yield adjustment mechanism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised Atlantic mackerel mortality rate</td>
</tr>
<tr>
<td>1986</td>
<td>Amendment 2</td>
<td>Equated fishing year with calendar year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revised squid discards foreign fishing allowances</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Implemented framework adjustment process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Converted expiration of fishing permits from indefinite to annual</td>
</tr>
<tr>
<td>1991</td>
<td>Amendment 3</td>
<td>Established overfishing definitions for all four species</td>
</tr>
<tr>
<td>1991</td>
<td>Amendment 4</td>
<td>Limited the activity of directed foreign fishing and joint venture transfers to foreign vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allowed for specification of optimum yield for Atlantic mackerel for up to three years</td>
</tr>
<tr>
<td>1996</td>
<td>Amendment 5</td>
<td>Adjusted longfin squid MSY; established 1 7/8” minimum mesh size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eliminated directed foreign fisheries for longfin squid, Illex, and butterfish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instituted a dealer and vessel reporting system; Instituted operator permitting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Implemented a limited access system for longfin squid, Illex and butterfish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expanded management unit to include all Atlantic mackerel, longfin squid, Illex, and butterfish under U.S. jurisdiction.</td>
</tr>
<tr>
<td>1997</td>
<td>Amendment 6</td>
<td>Established directed fishery closure at 95% of DAH for longfin squid, Illex and butterfish with post-closure trip limits for each species</td>
</tr>
<tr>
<td>Year</td>
<td>Amendment</td>
<td>Action Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>1997</td>
<td>Amendment 7</td>
<td>Established a mechanism for seasonal management of the Illex fishery to improve the yield-per-recruit. Revised the overfishing definitions for longfin squid, Illex and butterfish.</td>
</tr>
<tr>
<td>1998</td>
<td>Amendment 8</td>
<td>Established consistency among FMPs in the NE region of the U.S. relative to vessel permitting, replacement and upgrade criteria.</td>
</tr>
<tr>
<td>1998</td>
<td>Framework 1</td>
<td>Brought the FMP into compliance with new and revised National Standards and other required provisions of the Sustainable Fisheries Act.</td>
</tr>
<tr>
<td>1998</td>
<td>Framework 1</td>
<td>Added a framework adjustment procedure.</td>
</tr>
<tr>
<td>2001</td>
<td>Framework 1</td>
<td>Established research set-asides (RSAs).</td>
</tr>
<tr>
<td>2002</td>
<td>Framework 2</td>
<td>Established that previous year specifications apply when specifications for the management unit are not published prior to the start of the fishing year (excluding foreign fishing specifications). Extended the Illex moratorium for one year; Established Illex seasonal exemption from longfin squid minimum mesh; Specified the longfin squid control rule; Allowed longfin squid specs to be set for up to 3 years.</td>
</tr>
<tr>
<td>2003</td>
<td>Framework 3</td>
<td>Extended the moratorium on entry to the Illex fishery for an additional year.</td>
</tr>
<tr>
<td>2004</td>
<td>Framework 4</td>
<td>Extended the moratorium on entry to the Illex fishery for an additional 5 years.</td>
</tr>
<tr>
<td>2008</td>
<td>Amendment 12</td>
<td>Implemented a butterfish rebuilding program.</td>
</tr>
<tr>
<td>2009</td>
<td>Amendment 9</td>
<td>Extended the moratorium on entry into the Illex fishery, without a sunset provision. Adopted biological reference points for longfin squid recommended by the stock assessment review committee (SARC). Designated EFH for longfin squid eggs based on available information Prohibited bottom trawling by MSB-permitted vessels in Lydonia and Oceanographer Canyons Authorized specifications to be set for all four MSB species for up to 3 years.</td>
</tr>
<tr>
<td>2009</td>
<td>Amendment 10</td>
<td>Implemented a 72-hour trip notification requirement for the longfin squid fishery.</td>
</tr>
<tr>
<td>2011</td>
<td>Amendment 14</td>
<td>Mackerel limited access.</td>
</tr>
<tr>
<td>2011</td>
<td>Amendment 14</td>
<td>EFH Updates.</td>
</tr>
<tr>
<td>2011</td>
<td>Amendment 14</td>
<td>Commercial/Recreational Mackerel Allocation.</td>
</tr>
<tr>
<td>2011</td>
<td>Amendment 14</td>
<td>Annual Catch Limit and Accountability Measure Omnibus Amendment.</td>
</tr>
</tbody>
</table>
4.3 FMP GENERAL MANAGEMENT OBJECTIVES/GOALS

The objectives, as described in the FMP as currently amended, are listed below.

1. Enhance the probability of successful (i.e., the historical average) recruitment to the fisheries.
2. Promote the growth of the U.S. commercial fishery, including the fishery for export.
3. Provide the greatest degree of freedom and flexibility to all harvesters of these resources consistent with the attainment of the other objectives of this FMP.
4. Provide marine recreational fishing opportunities, recognizing the contribution of recreational fishing to the national economy.
5. Increase understanding of the conditions of the stocks and fisheries.

4.4 MANAGEMENT UNIT/SCOPE

The management unit is currently all northwest Atlantic mackerel (*Scomber scombrus*), longfin squid, *Illex illecebrosus*, and butterfish (*Peprilus triacanthus*) under U.S. jurisdiction though an alternative in the amendment could effectively extend the management unit to include RH/Ss.

THIS SPACE INTENTIONALLY LEFT BLANK
5.0 MANAGEMENT MEASURES AND ALTERNATIVES

Throughout this document the reader will note that the focus of the alternatives is on the Atlantic mackerel and longfin squid fisheries (and more on mackerel for preferred alternatives since several times more RH/S appear to be caught in the mackerel fishery compared to the longfin squid fishery). This is intentional because those are the MSB fisheries that appear to have at least somewhat substantial RH/S interactions. The Illex fishery appears to rarely interact with RH/S (see table 21) and there has not been a directed butterfish fishery since 2001. All of the alternatives are geared to RH/S issues, whether in regards to monitoring, catch reduction, or general management.

A variety of alternatives were considered but rejected by the Council for a variety of reasons. A summary of those alternatives and an explanation of why they were rejected follows immediately below:

Considered but Rejected Management Actions

1. The Council decided not to add a provision for annual forage set-asides for mackerel, squids, and butterfish. Instead, the Council noted that the recent Omnibus Annual Catch Limit Amendment already allows harvest reductions due to forage concerns and concluded that formal set-asides would be better considered after the Council develops ecosystem level goals and objectives that are informed by the ongoing work of the ecosystem subcommittee of the Scientific and Statistical Committee.

2. The Council considered including consideration of catch shares for the squid fisheries during the scoping process but concluded that it would be more effective to focus Amendment 14 on river herring and shad issues. Also, there was strong public comment against including squid catch shares at the current time.

3. The Council considered requiring a 6 hour pre-landing notification via phone to land more than 20,000 pounds of mackerel so as to facilitate quota monitoring. This was removed because NMFS is trying to phase out phone notifications of this kind.

4. The Council considered requiring a 6 hour pre-landing notification via phone to land more than 2,500 pounds of longfin squid so as to facilitate quota monitoring. This was removed because NMFS is trying to phase out phone notifications of this kind.

5. The Council considered requiring daily electronic reporting by MSB-permitted dealers so as to facilitate quota monitoring and cross checking with other data sources. This was removed because other options seemed equally effective and the infrastructure for 24hr reporting is burdensome for both NMFS and dealers.

6. The Council considered requiring 48 hour electronic reporting by MSB-permitted dealers so as to facilitate quota monitoring and cross checking with other data sources. This was removed because other options seemed equally effective and the infrastructure for 48hr reporting is burdensome for both NMFS and dealers.
7. The Council considered requiring 72 hour electronic reporting by MSB-permitted dealers so as to facilitate quota monitoring and cross checking with other data sources. This was removed because other options seemed equally effective and the infrastructure for 72hr reporting is burdensome for both NMFS and dealers.

8. The Council considered requiring trip termination following 3 slipped hauls on an observed trip so as to minimize slippage events. The goal is to minimize slippage events. This was removed because other options seemed equally effective (termination after 1 or 2 hauls) and having 3 slipped hauls on one trip would be a rare event.

9. The Council considered using mesh changes to reduce the catch of river herrings and shads but concluded such measures were not feasible due to the lack of trawl mesh selectivity for mackerel, river herrings, and shads. Selectivity information would be necessary to evaluate both potential benefits to river herrings and shads and potential costs to the relevant directed fisheries.

10. Some measures under consideration address slippage where the contents of a net on an observed haul on an observed trip are released in the water. In these cases the observer cannot sample the released catch. Some alternatives considered requiring ¼ of the catch to be pumped on board but these were rejected because catch may be patchy so sampling from ¼ of the net may not provide reliable information.

11. To obtain information on fish that may remain in the net, the Council considered alternatives that would require nets to be periodically brought aboard after pumping for sampling. These alternatives were rejected because the observer program had already begun such sampling at higher rates than those considered in the document. An alternative was also added to prohibit any discarding of un-sampled fish, even operational discards.

12. To consider broader RH/S conservation and management issues, the DEIS considered adding any or all RH/S species as directly managed “stocks in the fishery” within the MSB FMP.

The Council initially considered adding none, one, or any combination of the RH/S species as "stocks" in the fishery. However, given the scope and complexity of the issue, the Council chose instead to develop a separate amendment, Amendment 15 to the MSB FMP, that would fully analyze the necessity of managing these stocks under the Magnuson-Stevens Act, the interjurisdictional issues related to management of these stocks, as well as the required and discretionary FMP provisions that would apply to those stocks if added to the fishery.

Further details are available in the DEIS, available at: http://www.nero.noaa.gov/regs/ under the 2012 “past action link,” but generally the DEIS found that direct Council management impacts to RH/S would be expected to be positive for all relevant RH/S species and in approximately the same fashion but to an unknown degree given the various sources of RH/S mortality and limitations on RH/S productivity. Positive RH/S impacts were primarily related to: 1) potential additional federal support of RH/S management (assessments, FMP and specifications review, etc.); 2) additional coordination of conservation activities across agencies; 3) Essential Fish
Habitat (EFH) designation and consultations; and 4) implementation of Annual Catch Limits (ACLs) and Accountability Measures (AMs).

The two key questions that will have to be answered by the Council in Amendment 15 are: 1) Is the current management framework is sufficient to conserve RH/S stocks; and 2) Can federal management by the Council substantially improve management of RH/S. The uncertainty regarding the current factors causing RH/S populations to remain in depressed states means that it will be difficult to identify specific causes and link remedies to specific outcomes. Given this, the extent of benefits from adding RH/S as stocks in the fishery will be difficult to quantify even though impacts are likely to be positive, but that will be the task of Amendment 15. The development of Amendment 15 has begun and may be tracked at the Council website: http://www.mafmc.org/, and then clicking through to the Mackerel-Squid-Butterfish section or by contacting Jason Didden at jdidden@mafmc.org (302-526-5254).

NOTE ON COMBINATIONS WITHIN AND BETWEEN ALTERNATIVE SETS:

There are about 80 alternatives in this document. This means that there are millions of different possible combinations. At the beginning of each Alternative Set, it is noted which alternatives may, and which alternatives may not be, grouped together within the Alternative Set. Between Alternative Sets, alternatives generally may be combined without problem. The only broad exception to this rule is that it would appear unlikely that alternatives from both of the area-based alternatives (Sets 7 and 8) would be chosen together.
5.1 Alternative Set 1: Additional Vessel Reporting Measures

5.1.1 Statement of Problem/Need for Action

Relatively low levels of catch monitoring have resulted in relatively high uncertainty about catch of RH/S in Mid-Atlantic and New England fisheries. The Council is therefore considering actions to decrease uncertainty so as to improve the management of RH/S catches. Some of these measures include changes to vessel reporting and these are included in this Alternative Set. These changes are intended to improve either the quality of data maintained by NMFS, the timeliness of that data, or both. Since dealer data is the primary monitoring tool for MSB quota management, the proposed vessel monitoring changes would mostly be useful for purposes of cross checking for errors that occur when data is entered into the dealer weighout databases.

5.1.2 General Rationale & Background

The measures in this Alternative Set would (alone and/or in combination with other alternatives) increase reporting and/or monitoring with the overall goal of improving the precision of RH/S catch estimates. Some of the focus may appear to be on mackerel and/or longfin squid general reporting compared to just RH/S in those fisheries. However, because extrapolations of RH/S catch are often made based on total landings, accurate monitoring of the target species is important when determining total catch of RH/S.

Current Reporting Requirements

The current suite of reporting requirements for MSB fisheries is further described under the No-action alternative below. But a general reporting summary is provided here as an introduction. The Northeast Region has two main types of reporting requirements for vessels, Vessel Trip Reporting (VTR) and Vessel Monitoring Systems (VMS). VTRs include such information as: Vessel identification; date fished; location fished; gear used, number of crew; total number of hauls; average tow duration; weight of species caught; and dealer information. All permits require VTR submissions, but at different time scales. VTRs are required to be submitted on a monthly basis for MSB permits but most MSB-permitted vessels must already submit VTRs on a weekly basis because of requirements for other permits (Atlantic herring or NE multispecies). NMFS has been moving many of the region’s fisheries toward weekly vessel trip reporting (VTR) to improve monitoring and monitoring timeliness.

VMS is used to collect near-real time vessel location information, and is often required for permits for fisheries that have area-based management components. Generally electronic VMS units are installed on vessels and automatically report vessel location to NMFS at least hourly. Several fisheries also require catch reporting via VMS. The herring fishery requires daily VMS catch reporting, and the multispecies fishery requires VMS catch reports at the close of each trip. The U.N. Food and Agriculture Organization has an informative primer on the use of VMS for the Monitoring, Control and Surveillance of fishing vessels here:
VMS units are not currently required for any MSB fisheries, although many MSB permitted vessels have VMS units due to requirements for other permits.

While landings information submitted weekly by dealers is the primary tool for MSB fishery quota monitoring, both VTR and VMS data have the potential to be used by managers for cross checking dealer data when monitoring quotas and making catch extrapolations. Alternatives in this set may appear to focus on mackerel and/or longfin squid general reporting compared to just RH/S in those fisheries. However, because extrapolations are often made based on total landings, accurate monitoring of the target species can be as important as determining the encounter rates of RH/S. This is because when estimations of non-target catch (including discards) such as RH/S are made with observer data, they are usually made based on the ratio of RH/S to total retained catch applied to landings data. For example, if it was found that in observer data, 1 pound of RH/S was caught for every 100 pounds of fish landed by mackerel vessels, and those same vessels landed 1,000,000 pounds of fish, one could estimate that 10,000 pounds of RH/S were caught. While small differences in the total landings number will not affect the estimate substantially, it is still important for both the ratio and the total landings number to be as accurate as feasibly possible.

The Northeast Fishery Observer Program also collects information on discarded and unusual catches via on-board monitors (called “observers”) placed by NMFS. Currently in MSB fisheries, just the longfin squid fishery has a requirement to provide 48-hour pre-trip notifications so that observers may be more efficiently allocated in that fishery. Additional details on existing observer-related provisions may be found below in section 5.3.3.

The current way vessel data is collected for MSB fisheries may be insufficient for a variety of reasons. The action alternatives discuss these reasons below since each addresses particular potential deficiencies.

PREFERRED ALTERNATIVES

The preferred alternatives from Alternative Set 1 would: require weekly VTR reporting for all MSB vessel permits (1c); require a 48-hour pre directed mackerel trip notification (1d48); require VMS and daily VMS catch reporting for mackerel and longfin squid vessels (1eMack, 1eLong, 1fMack, and 1fLong); and require a 6-hour pre-landing notification via VMS for mackerel landings greater than 20,000 pounds (1gMack).

These preferred alternatives are designed to be integrated with existing monitoring and reporting requirements and other measures in this document to create an overall complementary system that provides accurate data on the catch of RH/S in the mackerel and longfin squid fleets. Each preferred alternative will add incremental information about RH/S catch as described below and thus provide incremental benefits in terms of better data to perform assessments and guide management. While not directly impacting RH/S stocks, better catch data should help improve RH/S assessments and management indirectly.
5.1.3 Management Alternatives

NOTE ON COMBINATIONS: Most of the Alternative Set 1 action alternatives could be implemented individually or collectively. However, 1c (weekly VTRs for all MSB permits) would encompass 1bMack and 1bLong so these would not be selected together. The 48-hr mackerel pre-trip notification (1d48) and 72-hr mackerel pre-trip notification (1d72) would also be mutually exclusive – only one would be chosen if either. The VMS reporting alternatives (1f’s and 1g’s) would need the respective 1e’s (that require VMS) for each fishery as a prerequisite before requiring VMS reporting.

Note: Since some of the alternatives below are very similar, they are grouped together for purposes of description.

1a. No-action

The current monitoring requirements would remain in effect, and these are described below for MSB permits.

The owner or operator of any vessel issued a valid permit or eligible to renew a limited access permit must maintain on board the vessel, and submit, an accurate fishing “Vessel Trip Report” log for each fishing trip, regardless of species fished for or taken, on forms supplied by or approved by the Regional Administrator. If no fishing trip is made during a month, a report stating so must be submitted for each month. If authorized in writing by the Regional Administrator, a vessel owner or operator may submit reports electronically, for example by using a VMS or other media. At least the following information and any other information required by the Regional Administrator must be provided: Vessel name; United States Coast Guard documentation number (or state registration number, if undocumented); permit number; date/time sailed; date/time landed; trip type; number of crew; number of anglers (if a charter or party boat); gear fished; quantity and size of gear; mesh/ring size; chart area fished; average depth; latitude/longitude (or loran station and bearings); total hauls per area fished; average tow time duration; hail weight, in pounds (or count of individual fish, if a party or charter vessel), by species, of all species, or parts of species; dealer permit number; dealer name; date sold, port and state landed; and vessel operator's name, signature, and the operator's permit number (if applicable).

VTRs must be filled out with all required information, except for information not yet ascertainable, prior to entering port. Information that may be considered unascertainable prior to entering port includes dealer name, dealer permit number, and date sold. Log reports must be completed as soon as the information becomes available. Upon the request of an authorized officer or an employee of NMFS designated by the Regional Administrator to make such inspections, all persons required to submit reports under this part must make immediately available for inspection copies of reports, and all records upon which those reports are or will be based, that are required to be submitted or kept under this part. Copies of fishing log reports must be kept on board the vessel and available for review for at least 1 year, and must be retained for a total of 3 years after the date the fish were last possessed, landed, and sold.
VTRs for MSB permits are currently required on a monthly basis, and must be postmarked or received by NMFS within 15 days after the end of the reporting month. If no fishing trip is made during a particular month for such a vessel, a report stating so must be submitted, as instructed by the Regional Administrator. Once the mackerel limited access system becomes operational, Tier 3 Limited Access mackerel permits’ VTRs will be required on a weekly basis, and must be postmarked or received by midnight of the first Tuesday following the end of the reporting week. If no fishing trip is made during a reporting week for such a vessel, a report stating so must be submitted and received by NMFS by midnight of the first Tuesday following the end of the reporting week.

VMS is not required for MSB permits but most MSB permits do have VMS requirements because of permits in other fisheries. A description of the proposed VMS monitoring, which is identical to current measures in place for other fisheries is described in the relevant action alternatives below.

For only longfin squid/butterfish moratorium permits, there is currently a 48-hour pre-trip notification in order to facilitate the placement of observers. Vessels must wait up to 48 hours from the time of notification for an observer if they are selected to take an observer.

Currently there is no way for the observer program to identify mackerel trips for observer placement purposes. Observers are carried on board some trips that land mackerel related to their placement on other vessels, primarily directed herring trips, but there is no systematic way to place observers on trips targeting mackerel.

1bMack. Institute weekly vessel trip reporting (VTR) for mackerel permits.

AND

1bLong. Institute weekly vessel trip reporting (VTR) for longfin squid/Butterfish permits.

AND

1c. Institute weekly vessel trip reporting (VTR) for all MSB permits (Mackerel, longfin squid/Butterfish, Illex) so as to facilitate quota monitoring and cross checking with other data sources. (PREFERRED)

With monthly reporting, data is not collected in a timely-enough manner to be feasibly used for quota monitoring. Weekly reporting would match the dealer reporting timeframe and increase the feasibility of using VTR data to cross-check dealer data. These three alternatives differ only in the permit categories that would be affected, as described in the alternatives themselves.

The basic VTR requirements would remain the same as described in the no-action alternative but the timing would change. Instead of the current monthly reporting for all but Tier 3 mackerel permits, the following timing requirement would be implemented:
VTRs must be postmarked or received by midnight of the first Tuesday following the end of the reporting week (each reporting week begins at 12:00am Sunday morning and ends 11:59pm Saturday night). If no fishing trip is made during a reporting week, a report stating so must be submitted and received by NMFS by midnight of the first Tuesday following the end of the reporting week. The date when fish are offloaded will establish the reporting week that the VTR must be submitted to NMFS. Any fishing activity during a particular reporting week (i.e., starting a trip, landing, or offloading catch) will constitute fishing during that reporting week and will eliminate the need to submit a negative fishing report to NMFS for that reporting week. For example, if a vessel begins a fishing trip on Wednesday, but returns to port and offloads its catch on the following Thursday (i.e., after a trip lasting 8 days), the VTR for the fishing trip would need to be submitted by midnight Tuesday of the third week, but a negative report (i.e., a “did not fish” report) would not be required for either earlier week.

1d48. Require 48 hour pre-trip notification to NMFS to retain/possess/transfer more than 20,000 pounds of mackerel so as to facilitate observer placement. (PREFERRED)

AND

1d72. Require 72 hour pre-trip notification to NMFS to retain/possess/transfer more than 20,000 pounds of mackerel so as to facilitate observer placement.

These notifications would be used to facilitate observer placement in a systematic fashion contingent upon funding. If vessels did not notify they would not be able to land more than incidental level of fish (20,000 pounds). These two alternatives differ only in how much lead time a vessel must provide before intending to depart. Currently the longfin squid fishery has a 48-hour requirement. The requirement was implemented in order to give observers sufficient time to be deployed to vessels.

Notification Mechanism

Mackerel permit holders would have to notify the Northeast Fishery Observer Program (NEFOP) at least 72 or 48 hours, but no more than 10 days, prior to any trip on which you intend to land over 20,000 lb of mackerel. This requirement would be in effect for the entire fishing year. Notification could be made using any of the following methods:

1) ONLINE via the Pre-Trip Notification System (PTNS - preferred method): The PTNS is accessible at https://fish.nefsc.noaa.gov/PTNS/.
2) EMAIL: Vessels could also submit a trip notification by email to NEFSC_PTNS@noaa.gov.
3) TELEPHONE: Vessels could also call 1-855-FISHES1 (1-855-347-4371).
| **1eMack.** Require VMS for limited access mackerel vessels. (PREFERRED) |
| **1eLong.** Require VMS for longfin squid/butterfish moratorium vessels (see 1f and 1g below). (PREFERRED) |

There is currently no VMS requirement for mackerel or longfin squid/butterfish moratorium vessels. If area-based management measures are implemented via this amendment then having VMS for compliance/enforcement could be useful.

Vessel Monitoring Systems are currently utilized in many New England fisheries. They are generally used to facilitate compliance and enforcement of area-based management measures as well as catch monitoring by means of a satellite connection between shore and a fixed electronic unit installed on vessels. Vessels that do not currently have VMS units would have to purchase and install electronic VMS units (see section 7 for costs and number of vessels impacted).

Vessels would be required to declare into the fishery for trips targeting mackerel and/or longfin squid. The VMS would ping NMFS with location information at least every hour, 24 hr a day, throughout the year (herring also does every one hour). Vessels with more stringent requirements (more frequent communication) would still be bound by those requirements.

Vessels would have to provide documentation to the Regional Administrator at the time of application or reapplication for a mackerel or longfin squid/butterfish limited access permit that the vessel has an operational VMS unit installed on board that meets the minimum performance criteria. Vessels would have to confirm the VMS unit's operation and communications service to NMFS by calling the Office of Law Enforcement (OLE) to ensure that position reports are automatically sent to and received by NMFS OLE. NMFS does not regard the fishing vessel as meeting the VMS requirements until automatic position reports and a manual declaration are received.
Require daily VMS reporting of catch by limited access mackerel vessels so as to facilitate monitoring and cross checking with other data sources. Requiring VMS (see 1fMack above) and requiring trip declarations (would be a prerequisite for this alternative. (PREFERRED)

AND

Require daily VMS reporting of catch by longfin squid moratorium permits so as to facilitate monitoring and cross checking with other data sources. Requiring VMS (see 1fLong above) and requiring trip declarations would be a prerequisite for this alternative. (PREFERRED)

Landings information submitted weekly by dealers is the primary tool for MSB fishery quota monitoring. Data collected from one Sunday-Saturday period must be reported by the following Tuesday. So landings on a Saturday must be reported 3 days later and landings on a Sunday must be reported 9 days later. Due to the high-volume nature of the Atlantic herring fishery, quota monitoring was difficult with these timeframes so it implemented daily VMS reporting of catch for Atlantic Herring (by 9am for the previous days catch). Given the overlap between the Atlantic herring and mackerel fisheries, requiring VMS for mackerel vessels would make reporting requirements consistent for vessels that participate in these fisheries. Daily VMS reporting would also decrease the probability of future quota overages caused by the time-lag in reporting. However, there have not been recent quota monitoring problems with the mackerel and/or longfin squid fisheries. If these alternatives were implemented, the following provisions would apply:

The owner or operator of a vessel issued a limited access permit to fish for mackerel and/or longfin squid would have to report catches (retained and discarded) of mackerel and/or longfin squid daily via VMS when on a declared trip, unless exempted by the Regional Administrator. The report would have to include at least the following information, and any other information required by the Regional Administrator: Fishing Vessel Trip Report serial number; month and day fish was caught; pounds retained; and pounds discarded. Daily VMS catch reports would have to be submitted in 24-hr intervals for each day and must be submitted by 0900 hr of the following day. Reports would be required even if fish caught that day has not yet been landed. This reporting would not exempt the owner or operator from other applicable reporting requirements. The owner or operator would have to submit a catch report via VMS each day when on a declared trip, regardless of how much fish is caught (including days when no mackerel and/or longfin squid are caught), unless exempted from this requirement by the Regional Administrator.

While there are no alternatives for area-based reporting of catch, which is what VMS is most useful for, VMS reporting does provide more rapid information about fish soon to be landed. This makes quota overages due to time-lags in reporting of landings less likely. Since mortality caps are often extrapolated from landings information, VMS reporting could be useful for either directed fishery quota monitoring or indirectly for a mortality cap.

1gMack. Require 6 hour pre-landing notification via VMS to land more than 20,000 pounds of mackerel, which could facilitate quota monitoring, enforcement, and/or portside monitoring. (PREFERRED)

AND

1gLong. Require 6 hour pre-landing notification via VMS to land more than 2,500 pounds of longfin squid, which could facilitate quota monitoring, enforcement, and/or portside monitoring. (The Council chose No Action for the longfin fishery for this measure.)

Pre landing notifications would be used to facilitate catch monitoring, enforcement, cross checking with other data sources, and portside monitoring (if applicable). There are currently no such notifications. If these alternatives were implemented, the following provisions would apply:

Vessels with mackerel and/or longfin squid limited access permits would have to report through VMS their intention to land more than 20,000 pound of mackerel and/or 2,500 pounds of longfin squid (these are the incidental trips limits for these species). Notification would have to be made no less than 6 hr prior to crossing the VMS Demarcation Line on the way back to port, and would have to include the estimated time of arrival in port, the port at which the catch will be landed, and the dealer(s) where offloads will occur. If the harvest ends less than 6 hr prior to landing, then the notification must be submitted immediately upon the conclusion of fishing activities.

THIS SPACE INTENTIONALLY LEFT BLANK
5.2 **Alternative Set 2: Additional Dealer Reporting Measures**

5.2.1 **Statement of Problem/Need for Action**

The way that dealers report landings has contributed to relatively high uncertainty about catch of RH/S in Mid-Atlantic and New England fisheries for two primary reasons. First, RH/S are often not reported in mixed landings of mackerel and Atlantic herring when the RH/S constitute a small percentage of the total landings. Second, it is not always clear how the quantities of fish reported are derived. Since extrapolations of are often based on total landings estimates (see 5.1.2), accurate monitoring of target species can also be important for determining encounter rates for non-target species.

In addition, general dealer reporting errors can be difficult to locate and correct because vessels generally do not confirm dealer data entries, though they can request and/or access their landings records. Fishermen report that when they request their dealer landings history there are frequently major errors (NMFS will investigate and if appropriate correct such errors).

5.2.2 **General Rationale & Background**

2b seeks to establish a mechanism where vessels could easily confirm what dealers entered via an internet connection to address the general dealer reporting error issue described above.

2c-2f would create a system that would at least gather information about how dealers are establishing landings composition and weights and could require all fish to be actually weighed. These would address the primary issues described above that contribute to relatively high uncertainty about catch of RH/S in Mid-Atlantic and New England fisheries.

Since there is no current standard for reporting weights, it is difficult to ascertain the prevalence of current procedures for determining weights. Staff discussions with MSB Advisory Panel members suggest that the majority of dealers are currently weighing a majority of their MSB landings, often with state-certified scales. However, there are some instances, especially with mackerel, where product may de-watered (or partially de-watered) and shipped by truck before it is weighed. In such instances the receiver may report back a weight, or weights may be estimated based on the size of the shipping containers or truck volume.

PREFERRED ALTERNATIVES

The preferred alternatives from Alternative Set 2 would: require federal MSB dealers to weigh all landings of mackerel over 20,000 pounds (2d) and longfin squid over 2,500 pounds (2f) or document why they cannot weight landings (2g). (If all fish are not weighed separately, dealers would have to document with each transaction how they estimate the relative composition of mixed catches.).
These preferred alternatives are designed to be integrated with existing monitoring and reporting requirements and other measures in this document to create an overall complementary system that provides accurate data on the catch of RH/S in the mackerel and longfin squid fleets. Each preferred alternative will add incremental information about RH/S catch as described below and thus provide incremental benefits in terms of better data to perform assessments and guide management. While not directly impacting RH/S stocks, better catch data should help improve RH/S assessments and management indirectly.

5.2.3 Management Alternatives

NOTE ON COMBINATIONS: Most of the Alternative Set 2 action alternatives could be implemented individually or collectively. However, 2c and 2d (weighing mackerel) would be mutually exclusive – only one would be chosen if either. Likewise, 2e and 2f (weighing longfin squid) would be mutually exclusive – only one would be chosen if either. 2g (dealers can use volume to weight conversions) would modify 2c, 2d, 2e, or 2f so 2g could only be chosen if at least one of those four alternatives was also chosen.

Note: Since some of the alternatives below are very similar, they are grouped together for purposes of description.

2a. No-action

The current dealer reporting requirements would remain in place. Dealers, including at-sea processors, must submit, for each transaction, an electronic dealer report each week. Reports are due by midnight (Eastern Time) each Tuesday for the week that ended the previous Saturday at midnight. Reports must include the correct vessel name and Federal permit number of each vessel that harvested any fish received along with the correct weight units for purchased fish. Dealers must also report the VTR serial number used by each vessel that harvested fish (VTRs are currently the only cross check for dealer information on MSB landings). Dealers are required to submit a report even if there is no activity during a week. As described above, it is believed that most dealers already weigh most mackerel and longfin squid catches but some may use volume to weight conversions.

2b. Require federally permitted MSB dealers to obtain vessel representative confirmation of Standard Atlantic Fisheries Information System transaction records for mackerel landings over 20,000 lb, Illex landings over 10,000 lb, and longfin squid landings over 2,500 lb.

This would be accomplished via Fish Online, an existing internet-based program that currently allows vessels to voluntarily check their landings records. The purpose would be to catch errors at the first point of entry in the data system. Alternative 2b would require vessel
owners/operators to review and validate all catch information reported for their vessels in Fish-on-Line (FOL) on a weekly basis, including VMS, VTR, and dealer data. If data issues are noted by the vessel owner/operator they would indicate a data issue and provide comments describing the issue, this would create an issue report to NMFS in FOL. NMFS would follow up on all issue reports to resolve discrepancies by working with vessel operators and dealers to correct data submissions. If no data issues are noted the vessel’s owner/operator would indicate such. Since dealers have to report the previous week’s landings on Tuesdays, vessel representatives would need to confirm the reports submitted by one Tuesday by 11:59pm on the following Friday, providing three business days to make such confirmations. Dealers would have to record a confirmation from vessel representatives that a vessel representative had used Fish Online to confirm that their landings had been entered appropriately.

2c. Require that federally permitted MSB dealers weigh all landings related to mackerel transactions over 20,000 pounds. If dealers do not sort by species, they would need to document in dealer applications how they estimate relative compositions of a mixed catch.

AND

2d. Require that federally permitted MSB dealers weigh all landings related to mackerel transactions over 20,000 pounds. If dealers do not sort by species, they would need to document with each transaction how they estimated the relative composition of a mixed catch. (PREFERRED)

These alternatives would only apply to mackerel landings over 20,000 lb. Most dealers already weigh most of their mackerel landings by packing mackerel into boxes in weighed quantities. These alternatives are geared to apparently infrequent occasions where large quantities of mackerel are shipped without accurate weighing and would require applicable dealers that do not already have access to scales to purchase scales or pay for weighing by third parties.

The cost of scales can vary dramatically. The use of an already existing truck scale can cost as little as $10, but the distance to reach one may make their use impracticable. Installation of a truck scale in an easily-accessible port can cost more than $100,000, depending on the area in which the scale will be placed. Not all dealers use trucks in the transport of fish however, and water weight can impact the accuracy of measurements. Floor scales handling up to 20,000 pounds cost $3,000-$5,000 while floor scales that can weigh up to 100,000 pounds cost $13,000-$17,000. Hopper scales can have multiple or single hoppers, and weigh fish as they flow through the scale. For precise estimates the water needs to be completely separated from the fish before use. Hopper scale costs can range from $20,000 to $50,000 per scale, and newer models are now being produced that can be used on vessels at sea. Smaller scales costing several hundred dollars may be purchased but may mean that additional time is required to process a product.

In addition, if dealers do not sort by species, these alternatives would require dealers to document how they estimate the relative composition of a mixed catch in order to report the
amount of each species bought from vessels on either their annual dealer application (2c), or with each transaction (2d). These alternatives don’t obligate dealers to always sort fish, they just obligate dealers to describe how they estimate species composition.

2e. Require that federally permitted MSB dealers **weigh** all landings related to longfin squid transactions over 2,500 pounds. If dealers do not sort by species, they would need to **document in dealer applications** how they estimate relative compositions of a mixed catch.

AND

2f. Require that federally permitted MSB dealers **weigh** all landings related to longfin squid transactions over 2,500 pounds. If dealers do not sort by species, they would need to **document with each transaction** how they estimate relative compositions of a mixed catch. *(PREFERRED)*

These alternatives would only apply to longfin squid landings over 2,500 lb. Since there is no current standard for reporting weights, it is difficult to ascertain the prevalence of current procedures for determining weights. Staff discussions with MSB Advisory Panel members suggest that the majority of dealers are currently weighing a majority of their MSB landings, often with state-certified scales. As such, this alternative would require as a legal requirement the existing general sorting and weighing practices.

2g. Related to preferred requirements to **weigh** all fish (2d, 2f), allow dealers to use **volume to weight conversions** if they cannot weigh landings – they would need to identify their conversion methods in their dealer application and explain why they cannot weigh all landings. *(PREFERRED)*

Under the no-action, dealers can choose to actually weigh their fish, or use some other method, such as volumetrics, to determine reported weights. Selecting this option would mean that, for 2e-2g, dealers could weigh fish or use volume to weight conversions. So either the weight or volume would have to be measured. Dealers would also have to document in their annual dealer application how they estimated the weights with volumetric measurements if the fish were not actually weighted. This could be as simple as identifying their assumed weight per volume of fish and how they estimate volume. While this alternative will not necessarily improve the data on landed fish, it would at least develop complete data on how weights are being estimated so that the Council could use that information in the future to decide if additional reporting measures were appropriate.
5.3 Alternative Set 3: At-Sea Observation Optimization Measures

5.3.1 Statement of Problem/Need for Action

In addition to relatively low levels of at-sea catch monitoring, several issues have potentially resulted in the data that is collected being less than optimal (though still the best available).

5.3.2 General Rationale & Background

NEFOP data is primarily used to estimate discards, but is also used in some cases to estimate total catch, as with the case of the butterfish mortality cap for the longfin squid fishery. Since annual catch limits include all catch including discards, it is important to get good information on discards to minimize the chances of closing fisheries too early or too late.

The alternatives in this set seek to make sure the data coming out of the Northeast Fishery Observer Program (NEFOP) are as representative and as indicative of fishery activities as possible, especially addressing and minimizing circumstances where vessels open nets in the water before observers have a chance to sample the contents of the net. Slippage is an important concept in this Alternative Set, and within this amendment is defined as: Unobserved catch, i.e., catch that is discarded prior to being observed, sorted, sampled, and/or brought on board the fishing vessel. Slippage can include the release of fish from a codend or seine prior to completion of pumping or the release of an entire catch or bag while the catch is still in the water.

- Fish that cannot be pumped and that remain in the net at the end of pumping operations are considered to be operational discards and not slipped catch. Observer protocols include documenting fish that remain in the net in a discard log before they are released, and existing regulations require vessel operators to assist the observer in this process. Management measures are under consideration in this amendment to address this issue and improve the observers’ ability to inspect nets after pumping to document operational discards.

- Discards that occur at-sea after catch brought on board and sorted are also not considered slipped catch.

From 2006-2010 approximately 9% (383 of 4186 or 77 per year) of hauls on observed longfin squid trips (trips that caught 50% or more longfin squid or at least 10,000 pounds longfin squid) and 26% (73 of 277 or 15 per year) of hauls on observed mackerel trips (trips that caught 50% or more mackerel or at least 100,000 pounds mackerel) had some unobserved catch. Catch may be unobserved for a variety of reasons, for example transfer to another vessel without an observer, observer not on station, or haul slipped (dumped) in the water. The above numbers would thus be an upper bound on slippage events. Since the MSB fisheries, and especially the mackerel fishery are relatively high-volume fisheries that can catch large quantities of fish in a single tow (as frequently documented in observer data), even a few slipped hauls could have the potential to substantially affect any analysis of the data or extrapolations made from the data. Therefore, alternatives to minimize slippage were included in the amendment. The issue is not so much that
a lot of slippage is occurring, just that if it did occur the overall value of observer data could be compromised because of the large quantities of fish that can be caught in a single tow.

PREFERRED ALTERNATIVES

The preferred alternatives from Alternative Set 3 would: require for mackerel and longfin-butterfish permits that: reasonable assistance be provided to observers (3b); notice of haul-back or pumping be provided to observers (3c); one observer is provided for each vessel on pair-trawl operations whenever possible (3d). Also, unless safety, mechanical, or spiny dogfish issues make it inappropriate, the same vessels would not be able to release hauls of fish (“slippage”) prior to observer documentation, and catch affidavits would have to be completed for any pre-observed net release (3j). For mackerel limited access vessels, there would also be a fleet-wide cap of 10 non-emergency (safety, mechanical, spiny dogfish) slippages after which further non-emergency slippages would require a vessel to terminate their trip (3l).

These preferred alternatives are designed to be integrated with existing monitoring and reporting requirements and other measures in this document to create an overall complementary system that provides accurate data on the catch of RH/S in the mackerel and longfin squid fleets. Each preferred alternative will add incremental information about RH/S catch as described below and thus provide incremental benefits in terms of better data to perform assessments and guide management. While not directly impacting RH/S stocks, better catch data should help improve RH/S assessments and management indirectly.

5.3.3 Management Alternatives

NOTE ON COMBINATIONS: Many of the Alternative Set 3 action alternatives could be implemented individually or collectively. However, 3h (trip termination after 1 slipped haul) and 3i (trip termination after 2 slipped hauls) would be mutually exclusive – only one would be chosen if either. Likewise, 3k (fishery-wide slippage cap at 5 mackerel slippage events) and 3l (fishery-wide slippage cap at 10 mackerel slippage events) would be mutually exclusive – only one would be chosen if either. 3m (fishery-wide slippage cap at 5 longfin slippage events) and 3n (fishery-wide slippage cap at 10 longfin slippage events) are also mutually exclusive – only one would be chosen if either. 3p would replace fishery-wide slippage caps with vessel slippage caps and it would be expected that either 3p could be chosen or 3k-3n could be chosen (if any). Also, if 3j (slippage prohibition with exceptions) was chosen then 3f or 3g could not be selected (3f and 3g require all catch to be brought aboard but 3j provides some exceptions).

If alternatives 3f – 3p are selected for mackerel, they would also require the selection of Alternative 1d48 (48-hr pre-trip notification) or 1d72 (72-hr pre-trip notification). There is already a pre-trip notification requirement in effect for longfin squid moratorium permit holders.

Note: Since some of the alternatives below are very similar, they are grouped together for purposes of description.
3a. No-action

The current requirements for vessels related to observers would continue to remain in effect. An owner or operator of a vessel on which a NMFS-approved sea sampler/observer is embarked must (§ 648.11(d)):

(1) Provide accommodations and food that are equivalent to those provided to the crew.

(2) Allow the sea sampler/observer access to and use of the vessel's communications equipment and personnel upon request for the transmission and receipt of messages related to the sea sampler's/observer's duties.

(3) Provide true vessel locations, by latitude and longitude or loran coordinates, as requested by the observer/sea sampler, and allow the sea sampler/observer access to and use of the vessel's navigation equipment and personnel upon request to determine the vessel's position.

(4) Notify the sea sampler/observer in a timely fashion of when fishing operations are to begin and end.

(5) Allow for the embarking and debarking of the sea sampler/observer, as specified by the Regional Administrator, ensuring that transfers of observers/sea samplers at sea are accomplished in a safe manner, via small boat or raft, during daylight hours as weather and sea conditions allow, and with the agreement of the sea samplers/observers involved.

(6) Allow the sea sampler/observer free and unobstructed access to the vessel's bridge, working decks, holding bins, weight scales, holds, and any other space used to hold, process, weigh, or store fish.

(7) Allow the sea sampler/observer to inspect and copy any the vessel's log, communications log, and records associated with the catch and distribution of fish for that trip.

When two boats are fishing cooperatively NMFS attempts to place observers on both vessels rather than just one but this does not always happen.

Slippage events are not currently required to be documented by any MSB permits although the observer program has had observers collecting more detailed information about slippage events since 2010. There are currently no requirements or disincentives for MSB-permitted vessels to avoid slipping hauls.
3b. Require the following reasonable assistance measures: provision of a safe sampling station; help with measuring decks, codends, and holding bins; help with fish collection; and help with basket sample collection by crew on vessels with mackerel limited access and/or longfin squid/Butterfish moratorium permits. **Requirements can be modified via the annual specifications process.** (PREFERRED)

The double underlined section is a slight modification from the original alternative in the DEIS and clarifies that the requirements may be modified through the annual specifications process.

Such assistance could help improve observer data by allowing the observer to focus on technical aspects of observing such as species identification, weighing, measuring, etc. While the observer program reports that many vessels provide this kind of assistance when possible already, codifying this would provide the observer program with additional leverage if cooperation problems occur on particular vessels. This language mirrors the measures proposed in Amendment 5 to the Atlantic Herring FMP. This alternative could be selected for vessels with limited access mackerel permits, longfin squid/Butterfish moratorium permits, or both.

3c. Require vessel operators to provide observers notice when pumping/haul-back occurs on vessels with mackerel limited access and/or longfin squid moratorium permits. **Requirements can be modified via the annual specifications process.** (PREFERRED)

The double underlined section is a slight modification from the original alternative in the DEIS and clarifies that the requirements may be modified through the annual specifications process.

Such notification could help improve observer data by making sure the observer is aware of all sampling opportunities. While the observer program reports that many vessels provide this kind of assistance when possible already, and vessels must provide information about when fishing activity begins and ends, clarifying notifications include pumping and haul-back would provide the observer program with additional leverage if cooperation problems occur on particular vessels regarding sampling. This alternative could be selected for vessels with limited access mackerel permits, longfin squid/Butterfish moratorium permits, or both.

3d. When observers are deployed on trips involving more than one vessel, observers would be required on any vessel taking on fish wherever/whenever possible on vessels with mackerel limited access and/or longfin squid moratorium permits. **Requirements can be modified via the annual specifications process.** (PREFERRED)

The double underlined section is a slight modification from the original alternative in the DEIS and clarifies that the requirements may be modified through the annual specifications process.
If vessels are working in pairs conducting pair trawling or other types of fishing (e.g. using purse seines or carrier vessels) where both vessels are receiving fish, having observers on both vessels ensures that all catch from the pair trawling trip is observed. The observer program generally does this already but this would just provide additional policy direction that the Council deems it less than optimal for only half of a pair-trawl operation to be observed when both vessels are receiving fish. This alternative could be selected for vessels with limited access mackerel permits, longfin squid/Butterfish moratorium permits, or both.

3e. On vessels with mackerel limited access and/or longfin squid moratorium permits, require slippage reports - “Released Catch Affidavits” from captains on observed trips if they slip a haul.

Selected alone, this alternative provides another account of slippage but does not do anything to deter slippage. This alternative would be used to augment and cross check the data collected by observers to develop a better understanding of slippage events. If a net is released, the vessel operator would be required to complete and sign a Released Catch Affidavit providing information about where, when, and why the net was released, as well as a good-faith estimate of the total weight of fish caught on the tow and weight of fish released. Released Catch Affidavits must be submitted within 48 hours of completion of the trip. This alternative could be selected for vessels with limited access mackerel permits, longfin squid/Butterfish moratorium permits, or both.

3f. Prohibit vessels with Mackerel limited access permits that have notified for a mackerel trip and are carrying an observer from releasing any discards before they have been brought aboard for sampling by the observer.

3g. Prohibit vessels with longfin squid moratorium permits that have notified for a longfin squid trip and are carrying an observer from releasing any discards before they have been brought aboard for sampling by the observer.

3f and 3g would be used to improve the quality of data collected by observers by requiring all fish that will be discarded be brought aboard for sampling in order to develop complete information about all species caught in the mackerel fishery (3f) or longfin squid fishery (3g).

3h. On vessels with mackerel limited access and/or longfin squid moratorium permits, require trip termination following 1 slipped haul on an observed trip so as to minimize slippage events.

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip any hauls on an observed trip so that data can be obtained on the composition of all catches. It would apply to vessels that had notified for a mackerel and/or longfin squid trip (longfin squid trips most already notify and notification for mackerel trips is considered in Alternative Set 1).
3i. On vessels with mackerel limited access and/or longfin squid moratorium permits, require trip termination following 2 slipped hauls on an observed trip so as to minimize slippage events.

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip 2 hauls on an observed trip so that data can be obtained on the composition of all catches. It would apply to vessels that had notified for a mackerel and/or longfin squid trip (longfin squid trips most already notify and notification for mackerel trips is considered in Alternative Set 1).

<table>
<thead>
<tr>
<th>3j. With the exceptions noted below, mackerel limited access and/or longfin squid moratorium permitted vessels that have notified the observer program of their intent to land over 2,500 pounds of longfin squid or over 20,000 pounds of mackerel and have been selected to carry an observer would be required to pump/haul aboard all fish from the net for inspection and sampling by the observer. Vessels that do not pump fish would be required to bring all fish aboard the vessel for inspection and sampling by the observer. Vessels would be prohibited from releasing fish from the net (slippage), transferring fish to another vessel (that is not carrying a NMFS-approved observer), or otherwise discarding fish at sea, unless the fish have first been brought aboard the vessel and made available for sampling and inspection by the observer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceptions: 1) pumping the catch could compromise the safety of the vessel/crew 2) mechanical failure precludes bringing some or all of the catch aboard the vessel; or 3) spiny dogfish have clogged the pump and consequently prevent pumping of the rest of the catch.</td>
</tr>
<tr>
<td>If a net is released, including the exemptions above, the vessel operator would be required to complete and sign a Released Catch Affidavit providing information about where, when, and why the net was released, as well as a good-faith estimate of the total weight of fish caught on the tow and weight of fish released. Released Catch Affidavits must be submitted within 48 hours of completion of the trip. Exemptions and provisions of this measure can be modified via the annual specifications process.</td>
</tr>
<tr>
<td>(PREFERRED)</td>
</tr>
</tbody>
</table>

The double underlined section is a slight modification from the original alternative in the DEIS and clarifies that the exemptions and provisions of this requirement may be modified through the annual specifications process.

This alternative would seek to minimize slippage (gaining observer catch data) and also gain information on any slippage events that do occur by requiring “Released Catch Affidavits. This alternative is different from 3e in that 3e only requires affidavits but 3j prohibits slippage except for the exceptions. This alternative is different from 3f and 3g in that 3f and 3g do not provide
for the exceptions specified in 3j. This alternative could be selected for vessels with limited access mackerel permits, longfin squid/Butterfish moratorium permits, or both. While observer records are the primary mechanism for determining what happened on an observed trip, the Council determined that the catch affidavits would provide a useful secondary stream of data on slippage, in the same way that VTR records are useful as a secondary data stream alongside dealer records when examining overall catch.

3k. Related to 3j, for mackerel limited access permitted vessels, NMFS would track the number of slippage events. Once a cap of 5 slippage events (adjustable via specifications) occur in any given year for notified and observed mackerel trips then subsequent slippage events on any notified and observed Mackerel trip would result in trip termination fleet-wide for the rest of that year. The goal is to minimize slippage events.

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip a haul once 5 slippage events have occurred overall in a year by vessels declaring mackerel trips. The goal is to minimize unnecessary slippage events and maximize observers' ability to observe all catch. Once mackerel limited access permits had slipped 5 or more times in a year on notified mackerel trips, any subsequent slippage during a notified and observed trip by another mackerel limited access permitted vessel would force a trip termination for that vessel, even if that particular vessel had never slipped a haul before. 3k could only be selected if 3j was also selected.

(PREFERRED)

3l. Related to 3j, for mackerel limited access permitted vessels, NMFS would track the number of slippage events. Once a cap of 10 slippage events (adjustable via specifications) occur in any given year for notified and observed mackerel trips then subsequent slippage events on any notified and observed Mackerel trip would result in trip termination fleet-wide for the rest of that year. The goal is to minimize slippage events. The only slippages that would count against the cap are non-emergency events, so the exceptions 1, 2, and 3 in 3j would not count against the slippage cap. Operational discards (small quantities of fish that remain in the net) that are made available to the observer for visual access prior to discarding would also not count against the slippage cap. Requirements and provisions of the measure can be modified via the annual specifications process.

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip a haul once 10 slippage events have occurred overall in a year by vessels declaring mackerel trips. The goal is to minimize unnecessary slippage events and maximize observers' ability to observe all catch. Once mackerel limited access permits had slipped 5 or more times in a year on notified mackerel trips, any subsequent slippage during a notified and observed trip by another mackerel limited access permitted vessel would force a trip termination for that vessel, even if that particular vessel had never slipped a haul before. 3k could only be selected if 3j was also selected.
The double underlined section is a slight modification from the original alternative in the DEIS and clarifies what kind of slippage events would count against the cap and allows the requirements and provisions of the cap to be modifiable via the annual specifications process.

While any slippage has the potential to compromise the overall value of observer data, the Council selected 10 non-exempt slippage events as a trigger in order to create a disincentive for vessels to slip catches, thereby addressing data quality issues while acknowledging that sometimes exigent circumstances require a certain degree of flexibility during fishery operations.

3m. Related to 3j, for longfin squid moratorium permitted vessels, NMFS would track the number of slippage events. Once a cap of 5 slippage events (adjustable via specifications) occur in any given trimester for notified and observed longfin squid trips then subsequent slippage events on any notified and observed longfin squid trip would result in trip termination for the rest of that trimester. The goal is to minimize slippage events. (The Council chose No Action for the longfin fishery for this measure.)

This alternative would seek to discourage slippage events by requiring longfin squid vessels to terminate a trip if they slip a haul once 5 slippage events have occurred overall in a trimester by vessels declaring longfin squid trips. The goal is to minimize unnecessary slippage events and maximize observers' ability to observe all catch. Once longfin squid limited access permits had slipped 5 or more times in a trimester on notified longfin squid trips, any subsequent slippage during a notified and observed trip by another vessel would force a trip termination for that vessel, even if that particular vessel had never slipped a haul before. 3k could only be selected if 3j was also selected.

3n. Related to 3j, for longfin squid moratorium permitted vessels, NMFS would track the number of slippage events. Once a cap of 10 slippage events (adjustable via specifications) occur in any given trimester for notified and observed longfin squid trips then subsequent slippage events on any notified and observed longfin squid trip would result in trip termination for the rest of that trimester. The goal is to minimize slippage events. (The Council chose No Action for the longfin fishery for this measure.)

This alternative would seek to discourage slippage events by requiring longfin squid vessels to terminate a trip if they slip a haul once 10 slippage events have occurred overall in a trimester by vessels declaring longfin squid trips. The goal is to minimize unnecessary slippage events and maximize observers' ability to observe all catch. Once longfin squid limited access permits had slipped 10 or more times in a trimester on notified longfin squid trips, any subsequent slippage during a notified and observed trip by another vessel would force a trip termination for that vessel, even if that particular vessel had never slipped a haul before. 3k could only be selected if 3j was also selected.
3o. For mackerel and/or longfin squid permitted vessels, if a trip is terminated within 24 hours because of any of the anti-slippage provisions (3g, 3h, 3k-3n), then the relevant vessel would have to take an observer on its next trip.

This would reduce a vessel’s incentive to slip a haul early in a trip in order to cause a trip termination and thereby avoid having an observer on board for an extended trip. Especially if a vessel has to pay for observers by the day, there could be an incentive to cut a trip short if there is an observer onboard. This alternative could be selected for vessels with limited access mackerel permits, longfin squid/Butterfish moratorium permits, or both.

3p. Allow mackerel and/or longfin squid permitted vessels to be assigned an annual quota (set during specifications) of slippage events related to 3j, specified annually. Once their slippage quota was reached, vessels would have to terminate an observed trip as well as upon any slippage event on subsequent observed trips for the remainder of the calendar year.

This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip a haul once a certain number of slippage events have occurred annually by that same vessel. While this is more intensive to track (by vessel versus by fleet), the advantage over fleet-based slippage caps (see above) is that one vessel is not penalized for another vessel’s slippage event. This alternative could be selected for vessels with limited access mackerel permits, longfin squid/Butterfish moratorium permits, or both.

This alternative would be in place of the fleet-wide caps and the vessel caps would be specified at a later date. As such, potential benefits would occur in the future (versus 3k-3n which would be implemented sooner if selected) and be dependent on what level the cap was set at.
5.4 Alternative Set 4 - Port-side, 3rd Party, and Other Sampling/Monitoring Measure

5.4.1 Statement of Problem/Need for Action

Relatively low levels of catch monitoring have resulted in relatively high uncertainty about catch of river herrings and shads in Mid-Atlantic and New England fisheries.

5.4.2 General Rationale & Background

From a practical standpoint, it is more efficient to subsample the landings of river herring and other non-target species when a vessel targeting mackerel reaches the dock than when it is at sea. Discards that occur at sea of non-target species are easier to monitor than are the landed fractions that go into the hold due to the large volumes that go into the hold. Dockside sampling could utilize higher sampling rates to better characterize the species in retained catches and an entire catch could be evaluated in one day or less as opposed to having a person at sea for multiple days. This option does not mean that at-sea monitors are unnecessary – they are essential to monitor discarding at sea. However, since most RH/S are retained (esp. for mackerel trips), portside sampling could increase sampling coverage from current levels at a lower cost than additional at-sea observers. For longfin squid trips the preceding discussion probably does not apply because most RH/S are discarded so they are not available dockside.

Several other sampling/monitoring alternatives are also included in the Alternative Set as described below including alternatives to require volumetric hold certification of Tier 3 mackerel limited access permits and longfin squid moratorium permit holders. While in Amendment 11 the fish hold certification was primarily for purposes of capacity control (not allowing vessels to reconfigure to have substantially larger fish holds), in this Amendment the measure is being considered for purposes of facilitating rapid catch weight estimates based on vessel volume for portside sampling, observer data hail weight estimates, and vessels’ VTR kept-weight estimates. There is also an ongoing voluntary project by industry to use fleet communication to avoid river herring hotspots. Since this project uses extensive post-side sampling a related alternative is included in this Alternative Set – the relevant alternative in this document just commits the Council to consider the project’s results once completed in order to determine potential management implications.

PREFERRED ALTERNATIVES

The preferred alternatives from Alternative Set 4 would make implementation of additional portside monitoring and catch avoidance based on portside monitoring frameworkable (4f). While other monitoring measures were deemed to be more effective (see above and below), the Council wanted the option of a streamlined approach to implementing additional portside monitoring and catch avoidance in the future if appropriate.
5.4.3 Management Alternatives

NOTE ON COMBINATIONS: All of the action alternatives in this Alternative Set could be implemented singly or in combination with any other alternative(s) in this Alternative Set.

Note: Since some of the alternatives below are very similar, they are grouped together for purposes of description.

4a. No-action

No-action - Port Sampling

There are no current requirements for port-side sampling of MSB trips to determine landings of RH/S or other species. NMFS port agents do currently work cooperatively with dealers to obtain biological samples needed for assessments but this is much smaller scale sampling than would be necessary to obtain estimates about the relative proportion of different species in a mixed catch. The states of Maine and Massachusetts have been conducting their own port-side sampling projects but state resource issues mean that their continued operation is uncertain. These state programs have been focused on herring but due to the overlap in the herring and mackerel fisheries also sample trips with mackerel.

While dealers are supposed to report all landings at the species level, to some degree RH/S can mix into Atl. Mackerel and especially Atlantic herring catches due to the similar body size and shape and high-volume nature of these fisheries.

No-action – Vessel Hold Requirements

There are no existing vessel hold requirements for Tier 3 mackerel permit holders or longfin squid/butterfish moratorium permit holders. Currently there are certified fish hold requirements being implemented through Amendment 11 to the MSB FMP for those vessels that qualify for Tier 1 and Tier 2 mackerel limited access permits. If a vessel is issued a Tier 1 or Tier 2 limited access mackerel permit, it must submit a fish hold volume certification by December 31, 2012. If an applicant submits a vessel replacement application prior to that date, he/she must submit a hold certification with the application. Amendment 11 to the MSB FMP specified that applicable vessels would be required to obtain a fish hold measurement from an individual credentialed as a Certified Marine Surveyor with a fishing specialty by the National Association of Marine Surveyors (NAMS) or from an individual credentialed as an Accredited Marine Surveyor with a fishing specialty by the Society of Accredited Marine Surveyors (SAMS). However, recent developments have suggested that this provision will likely be revisited because it appears likely that other professionals such as marine architects could be qualified in an equal or superior fashion.

Amendment 11 also implemented rules that any increase in hold size for Tier 1 and/or Tier 2 vessels could only be increased once and may not exceed 10 percent of the vessel’s baseline hold.
specification. Vessels with MSB permits do have other vessel baseline restrictions to control capacity increases based on length, tonnage, and horsepower but the purposes of the vessel hold measurement requirements in this Amendment are not for capacity control but for facilitating catch measurements.

No-action – Sustainable Fisheries Coalition Project

Currently vessels may voluntarily participate in the Sustainable Fisheries Coalition project, which is described in Alternative 4f below. The Sustainable Fisheries Coalition is an organization of the Atlantic herring and mackerel mid-water trawl and purse seine fleet operating from Maine through New Jersey. Vessels that are members of the Sustainable Fisheries Coalition account for the majority of Atlantic herring and mackerel landings in the U.S.

4b. Require industry-funded 3rd party port-side landings sampling program (including total weight documentation) for mackerel landings over 20,000 pounds. Required coverage levels would be specified annually during specifications. NEFSC would accredit samplers and manage the program/data. Vessels would contract directly with providers and pay providers directly. If selected, vessels would have to wait until their sampler arrived unless a waiver is obtained from the observer program.

4c. Require industry-funded 3rd party port-side landings sampling program (including total weight documentation) for longfin squid landings over 2,500 pounds. Required coverage levels would be specified annually during specifications. NEFSC would accredit samplers and manage the program/data. Vessels would contract directly with providers and pay provider directly. If selected, vessels would have to wait until their sampler arrived unless a waiver is obtained from the observer program.

For either 4b or 4c, implementation details are described below (these provisions are identical to those currently in effect for Northeast multispecies fishing). Dockside monitors for groundfish cost $50-$70/hr. Different sized vessels would have different costs for offload monitoring due to different hold sizes and processor offload speeds, but a 6-14 hour offload would cost $300-$980 for dockside monitoring. Discussions with MSB Advisory Panel members suggested that 6-14 hours would be typical offload time for high volume trips but trips around the thresholds of 20,000 pounds of mackerel or 2,500 pounds of longfin squid would take much shorter and cost less to monitor.

Vessels would be required to contact the Northeast Fisheries Observer Program (NEFOP) at least 6 hours prior to landing (some notification requirement options are detailed in Alternative Set 1 – but others may be developed during specifications). NEFOP would notify the vessel whether they are selected to secure a portside monitor. If a vessel is selected, a vessel representative would be responsible for contacting an approved portside monitoring vendor. If a trip is not selected for portside monitoring, NEFOP will issue a waiver.
Target coverage levels would be set annually during the specifications process. NEFOP would randomly select trips for coverage (i.e., no priority would be given to trips to specific areas, trips with at-sea observers, etc.).

In addition, the Council or Regional Administrator could adjust any aspects of the operation standards/procedures for the portside monitoring program through specifications.

Standards for Approval/Certification of Portside Monitoring Service Providers

The following standards would be used by NMFS to evaluate service providers employed by Mackerel and longfin squid vessels to comply with the portside reporting requirements outlined in this section. NMFS will certify/approve service providers and associated portside monitors as eligible to provide sector monitoring services based upon criteria specified below and can decertify/disapprove service providers and/or individual monitors if such criteria are no longer being met. NMFS will publish a list of approved service providers consistent with the Administrative Procedures Act.

The following standards and criteria for approval can be further modified by a future Council action. Portside monitoring program service providers must apply for certification/approval from NMFS. NMFS shall approve or disapprove a service provider based upon the completeness of the application and a determination of the applicant's ability to perform the duties and responsibilities of a portside monitoring service provider, as further defined below. As part of that application, potential service providers must include the following information:

- Identification of corporate structure, including the names and duties of controlling interests in the company such as owners, board members, authorized agents, and staff; and articles of incorporation, or a partnership agreement, as appropriate.
- Contact information for official correspondence and communication with any other office.
- A statement, signed under penalty of perjury, from each owner, board member, and officer that they are free from a conflict of interest with fishing-related parties including, but not limited to, vessels, dealers, shipping companies, sectors, sector managers, advocacy groups, or research institutions and will not accept, directly or indirectly, any gratuity, gift, favor, entertainment, loan, or anything of monetary value from such parties.
- A statement, signed under penalty of perjury, from each owner, board member, and officer describing any criminal convictions, Federal contracts they have had, and the performance rating they received on the contract, and previous decertification action while working as an observer or observer service provider.
- A description of any prior experience the applicant may have in placing individuals in remote field and/or marine work environments. This includes, but is not limited to, recruiting, hiring, deployment, and personnel administration.
- A description of the applicant's ability to carry out the responsibilities and duties of a portside monitoring service provider and the arrangements to be used.
- Evidence of adequate insurance to cover injury, liability, and accidental death for portside monitors (including during training). Workers' Compensation and Maritime Employer's Liability insurance must be provided to cover the portside monitors; vessel owner; and
service provider. Service providers shall provide copies of the insurance policies to portside monitors to display to the vessel owner, operator, or vessel manager, when requested.

- Service providers shall provide benefits and personnel services in accordance with the terms of each monitor’s contract or employment status.
- Proof that the service provider’s portside monitors have passed an adequate training course that is consistent with the curriculum used in the current NEFOP training course, unless otherwise specified by NMFS.
- An Emergency Action Plan describing the provider’s response to an emergency with a portside monitors, including, but not limited to, personal injury, death, harassment, or intimidation.
- Evidence that the company is in good financial standing.

Monitoring service providers must be able to document compliance with the following criteria and requirements:

- A comprehensive plan to deploy NMFS-certified portside monitors according to a prescribed coverage level (or level of precision for catch estimation), as specified by NMFS, including all of the necessary vessel reporting/notice requirements to facilitate such deployment, including the following requirements:
 - A service provider must be available to industry 24 hours per day, 7 days per week, with the telephone system monitored a minimum of four times daily to ensure rapid response to industry requests.
 - A service provider must be able to deploy portside monitors to all ports in which service is required by this section.
 - A service provider must report portside monitor deployments to NMFS in a timely manner to determine whether the predetermined coverage levels are being achieved.
 - A service provider must assign portside monitors in a fair and equitable manner without regard to any preference by representatives of vessels other than when the service is needed and the availability of approved/certified monitors.
 - A service provider’s portside monitor assignment must be representative of fishing activities for a given port and must be able to monitor fishing activity throughout the fishing year.

- The service provider must ensure that portside monitors remain available to NMFS, including NMFS Office for Law Enforcement, for debriefing for at least 2 weeks following any monitored offload.

- The service provider must report possible portside monitor harassment; discrimination; concerns about vessel safety or marine casualty; injury; and any information, allegations, or reports regarding portside monitor conflict of interest or breach of the standards of behavior to NMFS, as specified by NMFS.

- Service providers must submit to NMFS, if requested, a copy of each signed and valid contract (including all attachments, appendices, addendums, and exhibits incorporated into the contract) between the service provider and those entities requiring services (i.e., participating vessels) and between the service provider and specific portside monitors.
• Service providers must submit to NMFS, if requested, copies of any information developed and used by the service providers distributed to vessels, such as informational pamphlets, payment notification, description of duties, etc.

• A service provider may refuse to deploy a portside monitor on a requesting fishing vessel for any reason including, but not limited to, the following:
 - If the service provider does not have an available portside monitor prior to a vessel’s intended date/time of landing.
 - If the service provider is not given adequate notice of vessel landing from the participating vessels, as specified by the service provider.
 - If the service provider has determined that the requesting vessel is inadequate or unsafe pursuant to the reasons described at § 600.746.
 - For any other reason, including failure to pay for previous deployments of portside monitors.

• A service provider must not have a direct or indirect interest in a fishery managed under Federal regulations, including, but not limited to, fishing vessels, dealers, shipping companies, Northeast multispecies sectors, advocacy groups, or research institutions and may not solicit or accept, directly or indirectly, any gratuity, gift, favor, entertainment, loan, or anything of monetary value from anyone who conducts fishing or fishing-related activities that are regulated by NMFS, or who has interests that may be substantially affected by the performance or nonperformance of the official duties of service providers. This does not apply to corporations providing reporting, dockside, and/or at-sea monitoring services to participants of another fishery managed under Federal regulations.

• A system to record, retain, and distribute the following information to NMFS, as requested, for a period specified by NMFS:
 - Portside monitor deployment levels, including the number of refusals and reasons for such refusals
 - Incident/non-compliance reports (e.g., failure to offload catch)
 - Hail reports, landings records, and other associated communications with vessels

• A means to protect the confidentiality and privacy of data submitted by vessels, as required by the Magnuson-Stevens Act.

• A service provider must be able to supply portside monitors with sufficient safety and data-gathering equipment, as specified by NMFS.

Standards for Approval/Certification of Individual Portside Monitors

For an individual to be certified as a portside monitor, the service provider must demonstrate that each potential monitor meets the following criteria:

• A high school diploma or legal equivalent.

• Successful completion of all NMFS-required training and briefings before deployment.

• Physical capacity for carrying out the responsibilities of a portside monitor pursuant to standards established by NMFS such as being certified by a physician to be physically fit to work as a portside monitor. The physician must understand the monitor’s job and working conditions, including the possibility that a monitor may be required to climb a ladder to inspect fish holds and/or trucks.

• Absence of fisheries-related convictions based upon a thorough background check
• Independence from fishing-related parties including, but not limited to, vessels, dealers, shipping companies, sectors, sector managers, advocacy groups, or research institutions to prevent conflicts of interest

Note: Due to their similarities 4d and 4e are described together.

4d. Require volumetric vessel-hold certification for Tier 3 limited access mackerel permits and specify a volume to weight conversion.

4e. Require volumetric vessel-hold certification for longfin squid moratorium permits and specify a volume to weight conversion.

These alternatives could facilitate rapid catch weight estimates based on vessel volume for portside sampling, observer data hail weight estimates, and vessels’ VTR kept-weight estimates. Amendment 11 to the MSB FMP specified that applicable vessels would be required to obtain a fish hold measurement from an individual credentialed as a Certified Marine Surveyor with a fishing specialty by the National Association of Marine Surveyors (NAMS) or from an individual credentialed as an Accredited Marine Surveyor with a fishing specialty by the Society of Accredited Marine Surveyors (SAMS). For the time being the same credentials are proposed for this amendment. However, recent developments have suggested that this provision will likely be revisited and it is possible that other professionals such as marine architects could be qualified in an equal or superior fashion. There would be no upgrade restrictions associated with these measures. This means that, unlike Tier 1 and 2 limited access mackerel permit holders, there would be no limitation on vessel upgrades related to the vessel hold certification for Tier 3 limited access mackerel permit holders and longfin squid moratorium permit holders. Put another way, the vessel hold certification for Tier 3 limited access mackerel permit holders and longfin squid moratorium permit holders would not restrict the transfer of these permits to a vessel with a larger fish hold volume.

4f. Within 6 months of the completion of the Sustainable Fisheries Coalition RH/S avoidance project (expected late 2013), the Council will meet to formally review the results and consider the appropriateness of developing a framework adjustment to implement any additional catch avoidance strategies that are suggested by the results of the Sustainable Fisheries Coalition avoidance project. (PREFERRED)

This would commit the Council to consider the findings from this project as they could apply to reducing the catch of RH/S in pelagic fisheries. Full details on this project are included in Appendix 7, but generally the project is testing if oceanographic and fishery data can be used to help industry avoid potential RH/S hotspots. Implementing measures similar to this project (i.e. making participation mandatory) would be a frameworkable action. Additional analysis will be competed if and when additional frameworks are initiated.
5.5 Alternative Set 5 - At-Sea Observer Coverage Requirements

5.5.1 Statement of Problem/Need for Action

Relatively low levels of catch monitoring have resulted in relatively high uncertainty about catch of river herrings and shads in Mid-Atlantic and New England fisheries. NMFS has strongly communicated that the at-sea portion of any additional observer coverage would have to be paid for by industry.

5.5.2 General Rationale & Background

Currently, observer coverage is allocated by methods outlined in the Standardized Bycatch Reporting Methodology (SBRM). The Standardized Bycatch Reporting Methodology (SBRM) Omnibus Amendment to the fishery management plans of the Northeast region was implemented in February 2008 to address the requirements of the Magnuson-Stevens Fishery Conservation and Management Act to include standardized discards reporting methodology in all FMPs of the New England Fishery Management Council and Mid-Atlantic Fishery Management Council. SBRM determines priorities in fleet selection for observer coverage, but overall coverage is dependent on fluctuating Federal budgets so observer coverage varies with each year's budget and priorities.

On September 15, 2011, upon the order of the U.S. Court of Appeals for the District of Columbia Circuit, the U.S. District Court for the District of Columbia, in the case of Oceana, Inc. v. Locke (Civil Action No. 08-318), vacated the Northeast Region Standardized Bycatch Reporting Methodology (SBRM) Omnibus Amendment and remanded the case to NMFS for further proceedings consistent with the D.C. Circuit Court’s decision.

To comply with the ruling, NMFS announced on December 29, 2011 (76 FR 81844) that the Northeast Region SBRM Omnibus Amendment is vacated and all regulations implemented by the SBRM Omnibus Amendment final rule (73 FR 4736, January 28, 2008) are removed. This action removed the SBRM section at § 648.18 and removes SBRM-related items from the lists of measures that can be changed through the FMP framework adjustment and/or annual specification process for the Atlantic mackerel, squid, and butterfish; Atlantic surfclam and ocean quahog; Northeast multispecies, monkfish; summer flounder; scup; black sea bass; bluefish; Atlantic herring; spiny dogfish; deep-sea red crab; and tilefish fisheries. This action also makes changes to the regulations regarding observer service provider approval and responsibilities and observer certification. The SBRM Omnibus Amendment had authorized the development of an industry-funded observer program in any fishery, and the final rule modified regulatory language in these sections to apply broadly to any such program. This action revises that regulatory language to refer specifically to the industry-funded observer program in the scallop fishery, which existed prior to the adoption of the SBRM Omnibus Amendment.

Overall, though the SBRM has been vacated by court order, it is still the method that was used to make current observer allocations. NMFS and the New England and Mid-Atlantic Fishery
Management Councils are developing a new omnibus amendment to bring Northeast fishery management plans into compliance with Magnuson-Stevens Act requirements for a standardized discards reporting methodology. A SBRM Fishery Management Action Team has been constituted to develop the new omnibus amendment and will begin work in 2012.

The SBRM can be viewed as the combination of sampling design, data collection procedures and analyses used to estimate discards and allocate observer coverage in multiple fisheries. The SBRM provides a structured approach for evaluating the efficacy of the allocation of observer coverage (sea days) to multiple fisheries (52 fleets) to monitor a large number of species (15 SBRM species groups) under the 13 different fishery management plans, the Marine Mammal Protection Act, and the Endangered Species Act. The SBRM is not intended to be the definitive document on the estimation methods nor is it a compendium of discard rates and total discards (Wigley et al. 2007). Instead, the SBRM is intended to support the application of multiple discard estimation methods that can be used in specific stock assessments. The SBRM provides a general structure for defining fisheries into homogeneous groups and allocating observer coverage based on prior information and the expected improvement in overall performance of the program. The general structure helps identify gaps in existing coverage, similarities among groups that allow for realistic imputation, and the tradeoffs associated with coverage levels for different species. The SBRM allows for continuous improvement in allocation as new information on the results of the previous year’s data is obtained.

Since RH/S are not federally-managed species, they have not been part of SBRM analyses. However, recently the science center has shifted funding, where possible, to mid-water trawl fleets in order to get better data on RH/S catch. Considerable uncertainty in RH/S catch remains, especially in pair-trawling that targets mackerel and in bottom-trawling primarily because of the rare-event nature of large RH/S catches.

This Alternative Set proposes higher levels of at-sea monitoring than are currently utilized. NMFS has indicated that additional observer coverage would have to be funded by industry. Initially alternatives were developed by fishery but even if management measures must be implemented by fishery, the analysis is best conducted by fleet (year/area/quarter/gear/mesh) because that is how the observer program allocates at-sea observer sea days and because of the mixed nature of MSB fisheries. 5b-5d are based on a fishery-specific approach while 5e approaches the issue from a SBRM fleet perspective. Because of the SBRM approach in 5e, it is the only alternative subset for which one can easily calculate what number of sea days would be required for a given target coefficient of variation (a measure of precision) in an upcoming year. That said, because of the inter-annual variability in catch and effort, using the prior year’s information to predict what observer coverage level is necessary (as is the case with SBRM-type approaches) may not provide consistent results.

Observer program notification (see Alternative Set 1) would be a prerequisite for any of the alternatives in this set.
PREFERRED ALTERNATIVES

The preferred alternatives from Alternative Set 5 would: recommended 100% observer coverage of mid-water trawl (MWT) mackerel trips (5b4) as well as tiered coverage levels for small mesh bottom trawl mackerel trips (100% for Tier 1, 50% for Tier 2, and 25% for Tier 3) (5c4) along with requiring mackerel vessels to pay $325 when they carry observers to help fund the desired coverage levels (5f). Coverage levels would be re-evaluated after 2 years (5h).

These preferred alternatives are designed to be integrated with existing monitoring and reporting requirements and other measures in this document to create an overall complementary system that provides accurate data on the catch of RH/S in the mackerel and longfin squid fleets. Specifically they would increase the at-sea monitoring of these fisheries in order to obtain more complete catch information. Each preferred alternative will add incremental information about RH/S catch as described below and thus provide incremental benefits in terms of better data to perform assessments and guide management. While not directly impacting RH/S stocks, better catch data should help improve RH/S assessments and management indirectly.

5.5.3 Management Alternatives

NOTE ON COMBINATIONS: Only one of the 5b (observer coverage for mackerel mid-water trawl) alternatives could be chosen. Likewise, only one of the 5c (observer coverage for mackerel small mesh bottom trawl) and one of the 5d (observer coverage for longfin squid small mesh bottom trawl) alternatives could be chosen. One alternative from each of these could be selected (a total of three). 5e1 and 5e2 (strata-fleet alternatives for mid-water trawl) are mutually exclusive as are 5e3 and 5e4 (strata-fleet alternatives for small mesh bottom trawl) but one alternative from the first pair could be chosen with one from the second pair. If any of the 5e alternatives were chosen, they would not be combinable with any of the 5b, 5c, or 5d alternatives (coverage could be based on a set percentage of trips or a set target coefficients of variation (C.V.s) but not both). 5f, 5g, and 5h provide for industry funding and review of the increased observer coverage levels proposed in 5b-5e so they could be added on to any of the other action alternatives.

If any measure in this Alternative Set is selected for mackerel, the Council would also need to select Alternative 1d48 (48-hr pre-trip notification) or 1d72 (72-hr pre-trip notification). There is already a pre-trip notification requirement in effect for longfin squid moratorium permit holders.

Note: Since some of the alternatives below are very similar, they are grouped together for purposes of description.

Alternatives 5b, 5c, and 5d would require various levels of coverage of trips for certain trips types, either mackerel or longfin squid. While this kind of alternative is relatively easy to implement if a trip notification is required (an option in Alternative Set 1), it does not guarantee a given level of precision. Precision depends on a variety of factors including the year to very variability seen in the data. Also, estimates of catch from observer data are made based on
time/area/gear units, not fishery (“mackerel” or “longfin squid”). Since the mackerel and longfin squid fisheries comprise only a portion of mid-water trawls and small mesh bottom trawl activity, requiring a portion of mackerel trips or longfin squid trips be observed is not going to result in that level of coverage for a specified time/area/gear unit due to other fishing activities. Given the relatively low levels of coverage in the mackerel and longfin squid fisheries however, any of the action alternatives would increase coverage and lead to better precision. One cannot be sure how much however because of the issues described above. In alternatives 5b, 5c, and 5d below the C.V. rates are those if the entire time/area/gear unit had that level of coverage. The sea days associated with the fishery coverage levels are those from recent VTR data in the mackerel and longfin squid fisheries, since those are the fisheries under consideration that are under control of the Council.

Alternative 5e would require NMFS to develop coverage levels based on C.V.s expected for river herring at the time/area/gear unit that is used in estimating catch for the two fisheries that account for most river herring catch, mid-water trawl and small mesh bottom trawl. However, since the Council can only require the fisheries it manages to pay for observer coverage, and fisheries outside of the Council’s control use the relevant gear types, and NMFS has said that any increase in observer coverage would have to be industry funded to be approvable, Alternative 5e would be very difficult to implement, as described below.

5a. No-action

The no action alternative would allocate observer coverage on limited access herring vessels through the current optimization/allocation process, based on the Omnibus Standardized Bycatch Reporting Methodology (SBRM) amendment. On September 15, 2011, upon the order of the U.S. Court of Appeals for the District of Columbia Circuit, the U.S. District Court for the District of Columbia, in the case of Oceana, Inc. v. Locke (Civil Action No. 08-318), vacated the Northeast Region Standardized Bycatch Reporting Methodology (SBRM) Omnibus Amendment and remanded the case to NMFS for further proceedings consistent with the D.C. Circuit Court’s decision.

To comply with the ruling, NMFS announced on December 29, 2011 (76 FR 81844) that the Northeast Region SBRM Omnibus Amendment was vacated and all regulations implemented by the SBRM Omnibus Amendment final rule (73 FR 4736, January 28, 2008) were removed.

NMFS and the New England and Mid-Atlantic Fishery Management Councils are developing a new omnibus SBRM amendment to bring Northeast fishery management plans into compliance with Magnuson-Stevens Act requirements for a SBRM. A SBRM Fishery Management Action Team has been constituted and is currently developing the new omnibus amendment.

Since the SBRM has been vacated by court order, it is not certain how observer coverage will be allocated in the immediate future. However, given legislative mandates and funding requirements of NMFS, it is likely that without additional action, the recent low levels of coverage for mackerel and longfin squid fishing will continue. From 2006-2010 approximately 6.5% of mackerel and 3.5% of longfin squid catches by weight were observed (see Section 6.3 for more details). Observer coverage sea-days are allocated by area-quarter-gear strata and these
fishery coverage percentages resulted from allocations to small mesh gear trips rather than allocations to these fisheries (see Appendix 2 for details). For Mid-Atlantic mid-water trawl (the primary area and gear for mackerel) and Mid-Atlantic bottom trawl (the primary area and gear for longfin squid) this has resulted in annual coefficients of variation (C.V.s) for individual RH/S species’ catch estimates usually being above 0.5 and often above 1.0 (see Appendix 2). These values indicate very high uncertainty in the associated estimates. If you consider the C.V. as a percentage and double it, this provides approximately the 95% confidence interval for normally distributed data. So a C.V. of 0.5 (or 50%) means that the 95% confidence interval is approximately plus or minus 100% of the estimate.

5b. Mackerel Mid-Water Trawl (MWT)

Coverage of this fleet has historically primarily occurred because of the winter mixing of the herring and mackerel fisheries as opposed to focusing on the mackerel fishery. The sub-alternatives below would require a range of percentage-based coverage levels to improve coverage from the very low levels currently occurring and improve catch estimation.

5b1. Require 25% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5b2. Require 50% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5b3. Require 75% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5b4. Recommend 100% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel. (PREFERRED)

Note: Require was also changed to recommend since the Council makes recommendations to NMFS.
The following figures illustrate the C.V.’s that would have been expected in 2009 and 2010 for different fleets with different percentages of coverages of trips for mid-water trawls for blueback herring and alewife. Shad catches are low so C.V.s are very high even at high levels of coverage and their curves are not shown. As an illustration of how to read the figures, if you start at the 0.5 mark on the horizontal axis of any of the figures (indicates 50% coverage), and draw a straight line up, the place where it intersects a curve will tell you the expected C.V. for the relevant species (blueback or alewife) and relevant fleet by looking left from the intersection point to the C.V.s on the vertical axis. Overall and as would be expected, as the percentage of covered trips increases, the C.V. falls and precision increases. For example, on figure 10, it is estimated that if a 50% trip coverage rate had been achieved, it would have resulted in approximate C.V.s for estimates of catch of blueback herring of 0.3 in Mid-Atlantic paired midwater trawls, of 0.7 in Mid-Atlantic single midwater trawls, of 0.3 in New England paired midwater trawls, and of 0.4 in New England single midwater trawls. On the same figure, it is estimated that if a 75% trip coverage rate had been achieved, it would have resulted in approximate C.V.s for estimates of catch of blueback herring of 0.2 in Mid-Atlantic paired midwater trawls, of 0.5 in Mid-Atlantic single midwater trawls, of 0.2 in New England paired midwater trawls, and of 0.3 in New England single midwater trawls. The reader will note that the predicted C.V.s from some coverage levels over 100% are still greater than 0 (100% would entail a census with a C.V. of zero). This is due to the low numbers of trips with mid-water gear and suggests that to get low C.V.s coverage rates near 100% are necessary.
While these CV and trip coverage associations are for mid-water trawls and not mackerel trips specifically, they represent the standard methodology used to estimate discards and/or catch (and the associated precision) from observer and landings data. If all other fisheries besides mackerel using these gears also implemented the same percentage coverage, then the described C.V.s may be achieved. However, the Mid-Atlantic Council can only regulate its own fisheries so it is not
possible to describe the C.V.s for these gear types that would result from the various percentage coverage levels for mid-water trawl mackerel trips.

Since coverage in this alternative would be related to 20,000 pound mackerel trips, 2006-2010 VTR data was analyzed to determine the approximate number of seadays fished on midwater trawl trips that kept 20,000 pounds or more of mackerel. These trips averaged 643 sea days each year ranging from 272 in 2010 to 926 in 2006. If 25%, 50%, 75%, or 100% of the average seadays were observed it would require 161, 322, 482, and 643 days respectively. Given the low levels of current coverage and an uncertain funding situation, most if not nearly all of these would or could have to be industry funded (see 5f below) if mandated.

Key things to notice are 1) the variability from one year to the next and 2) the variability between fleets (a given percentage coverage results in one C.V. for one fleet and another C.V. for a different fleet). In other words, obtaining a given level of precision (C.V.) in RH/S catch estimates for this gear type will probably require markedly different coverage levels from year to year due to inter-annual variability in the catches. Since the inter-annual variability cannot totally be predicted, it is not really possible to predict the exact C.V.s that any given level of coverage will result in, especially for mackerel fishery requirements given it represents only a portion of mid-water trawl activity.

Waivers would only be granted if an observer could not be obtained because of issues with NMFS or an observer provider (i.e. through no fault of the vessel).
5c. Mackerel Small Mesh Bottom Trawl (SMBT)

A very small percentage of mackerel trips are observed overall. The sub-alternatives below would require a range of percentage-based coverage levels to improve coverage from the very low levels currently occurring and improve catch estimation. Analysis in the document relates these coverage levels to potential ranges of uncertainty that would result from such coverage levels.

5c1. Require 25% of SMBT (<3.5 in) mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5c2. Require 50% of SMBT (<3.5 in) mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5c3. Require 75% of SMBT (<3.5 in) mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5c4. Recommend the following observer coverages percentages for mackerel limited access vessels intending to fish for or retain over 20,000 pounds of mackerel when using small mesh (<3.5 inches) bottom trawl gear: Tier 1: 100%; Tier 2: 50%; Tier 3: 25%. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

(PREFERRED)

The double underlined section highlights a modification from the original alternative in the DEIS. 5c4 has been modified to essentially combine 5c1, 5c2, and the original 5c4 by applying higher coverage levels for the higher tier vessels and lower coverage levels for the lower tier vessels. Since the original alternatives considered 25%-100% coverage applied to all mackerel permitted vessels, the modified alternative is within the range and intent of the alternatives considered in the DEIS. The rationale is that the vessels accounting for most mackerel landings should have the highest levels of coverage and other vessels would have coverage in proportion to their potential landings. Require was also changed to recommend since the Council makes recommendations to NMFS.
The following figures illustrate the C.V.’s that would have been expected in 2009 and 2010 for different fleets with different percentages of coverages of trips for small mesh bottom trawls for blueback herring and alewife. Shad catches are low so C.V.s are very high even at high levels of coverage and their curves are not shown. As an illustration of how to read the figures, if you start at the 0.5 mark on the horizontal axis of any of the figures (indicates 50% coverage), and draw a straight line up, the place where it intersects a curve will tell you the expected C.V. for the relevant species (blueback or alewife) and relevant fleet by looking left from the intersection point to the C.V.s on the vertical axis. Overall and as would be expected, as the percentage of covered trips increases, the C.V. falls and precision increases. For example, on figure 14, it is estimated that if a 50% trip coverage rate had been achieved, it would have resulted in approximate C.V.s for estimates of catch of blueback herring of 0.1 in Mid-Atlantic small mesh bottom trawls, and of 0.2 in New England small mesh bottom trawls. On the same figure, it is estimated that if a 75% trip coverage rate had been achieved, it would have resulted in approximate C.V.s for estimates of catch of blueback herring of 0.075 in Mid-Atlantic small mesh bottom trawls, and of 0.15 in New England small mesh bottom trawls.

Figure 14. Blueback SMBT 2009
Figure 15. Blueback SMBT 2010

Blueback herring (Small mesh BT), 2010

- MA Small mesh BT
- NE Small mesh BT

% coverage of fleet trips vs. CV of incidental catch

THIS SPACE INTENTIONALLY LEFT BLANK
While these CV and trip coverage associations are for small mesh bottom trawls and not mackerel trips specifically, they represent the standard methodology used to estimate discards and/or catch (and the associated precision) from observer and landings data. If all other fisheries besides mackerel using these gears also implemented the same percentage coverage, then the described C.V.s may be achieved. However, the Mid-Atlantic Council can only regulate its own fisheries so it is not possible to describe the C.V.s for these gear types that would result from the various percentage coverage levels for small-mesh bottom trawl mackerel trips.
Since coverage in this alternative would be related to 20,000 pound mackerel trips, 2006-2010 VTR data was analyzed to determine the approximate number of seadays fished on small mesh bottom trawl trips that kept 20,000 pounds or more of mackerel. These trips averaged 172 seadays each year ranging from 113 in 2009 to 286 in 2006. If 25%, 50%, 75%, or 100% of the average seadays were observed it would require 43, 86, 129, and 172 days respectively. Given the low levels of current coverage and an uncertain funding situation, most if not nearly all of these would have to be industry funded (see 5f below) if mandated.

Key things to notice are 1) the variability from one year to the next and 2) the variability between fleets (a given percentage coverage results in one C.V. for one fleet and another C.V. for a different fleet). In other words, obtaining a given level of precision (C.V.) in RH/S catch estimates for this gear type will probably require markedly different coverage levels from year to year due to inter-annual variability in the catches. Since the inter-annual variability cannot totally be predicted, it is not really possible to predict the exact C.V.s that any given level of coverage will result in, especially for mackerel fishery requirements given it represents only a small portion of small-mesh bottom-trawl activity.
5d. Longfin Squid Small Mesh Bottom Trawl (SMBT) (The Council chose No Action for the longfin fishery for this measure.)

While coverage has increased in 2011 related to the implementation of the butterfish mortality cap on the longfin squid fishery, a small percentage of longfin squid trips have been observed historically. The sub-alternatives below would require a range of percentage-based coverage levels to improve coverage from the very low levels currently occurring and improve catch estimation. Analysis in the document relates these coverage levels to potential ranges of uncertainty that would result from such coverage levels.

5d1. Require 25% of SMBT (<3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.

5d2. Require 50% of SMBT (<3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.

5d3. Require 75% of SMBT (<3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.

5d4. Require 100% of SMBT (<3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.

C.V. and percent coverage relationships for small mesh bottom trawl are illustrated in the previous alternative.

The above figures illustrate the C.V.’s that would have been expected in 2009 and 2010 for different fleets with different percentages of coverages of trips for small mesh bottom trawls for blueback herring and alewife. Shad catches are low so C.V.s are very high even at high levels of coverage and their curves are not shown. As an illustration of how to read the figures, if you
start at the 0.5 mark on the horizontal axis of any of the figures (indicates 50% coverage), and draw a straight line up, the place where it intersects a curve will tell you the expected C.V. for the relevant species (blueback or alewife) and relevant fleet by looking left from the intersection point to the C.V.s on the vertical axis. Overall and as would be expected, as the percentage of covered trips increases, the C.V. falls and precision increases. For example, on figure 14, it is estimated that if a 50% trip coverage rate had been achieved, it would have resulted in approximate C.V.s for estimates of catch of blueback herring of 0.1 in Mid-Atlantic small mesh bottom trawls, and of 0.2 in New England small mesh bottom trawls. On the same figure, it is estimated that if a 75% trip coverage rate had been achieved, it would have resulted in approximate C.V.s for estimates of catch of blueback herring of 0.075 in Mid-Atlantic small mesh bottom trawls, and of 0.15 in New England small mesh bottom trawls.

While these CV and trip coverage associations are for small mesh bottom trawls and not longfin squid trips specifically, they represent the standard methodology used to estimate discards and/or catch (and the associated precision) from observer and landings data. If all other fisheries besides longfin squid using these gears also implemented the same percentage coverage, then the described C.V.s may be achieved. However, the Mid-Atlantic Council can only regulate its own fisheries so it is not possible to describe the C.V.s for these gear types that would result from the various percentage coverage levels for small-mesh bottom trawl longfin squid trips.

Since coverage in this alternative would be related to 2,500 pound longfin squid trips, 2006-2010 VTR data was analyzed to determine the approximate number of seadays fished on small mesh bottom trawl trips that kept 2,500 pounds or more of longfin squid. These trips averaged 5,357 sea days each year ranging from 3,932 in 2010 to 6,743 in 2006. If 25%, 50%, 75%, or 100% of the average seadays were observed it would require 1339, 2678, 4017, and 5,357 sea days respectively. Given the low levels of current coverage and an uncertain funding situation, most if not nearly all of these might have to be industry funded (see 5f below) if mandated. About 10% of 2,500 pound longfin squid trips were observed in 2011, so up to 10% of these might be funded but such funding is not guaranteed.

Key things to notice are 1) the variability from one year to the next and 2) the variability between fleets (a given percentage coverage results in one C.V. for one fleet and another C.V. for a different fleet). In other words, obtaining a given level of precision (C.V.) in RH/S catch estimates for this gear type will probably require markedly different coverage levels from year to year due to inter-annual variability in the catches. Since the inter-annual variability cannot totally be predicted, it is not really possible to predict the exact C.V.s that any given level of coverage will result in, especially for mackerel fishery requirements given it represents only a portion of small-mesh activity.
5e. Strata-Fleet-Based Alternatives

On a fleet level, catch estimates of river herrings are often imprecise. The following sub-alternatives would require coverage levels that would be expected to result in the specified C.V. levels for river herrings. Shad were not included because very high coverage levels would be required to achieve the respective C.V.s.

5e1. Require NMFS to allocate sea days such that Mid-Atlantic alewife and blueback catch C.V.s for MWT would each be expected to be at or below 0.30.

5e2. Require NMFS to allocate sea days such that Mid-Atlantic alewife and blueback catch C.V.s for MWT would each be expected to be at or below 0.20.

5e3. Require NMFS to allocate sea days such that alewife and blueback catch C.V.s for SMBT would each be expected to be at or below 0.30.

5e4. Require NMFS to allocate sea days such that alewife and blueback catch C.V.s for SMBT would each be expected to be at or below 0.20.

These alternatives would require NMFS to allocate sea days to achieve the specified river herring C.V.s. Based on the same analysis as above (in 5b-5c), the sea days required are described in the table below. These are the sea days related to the trips in the figures from those alternatives. Since sea day requirement estimates are based on prior year performance, the requirements for 2009 and 2010 are both provided and they illustrate how different numbers of sea days are required each year to attain a given C.V. The approximate number of executed sea days for each grouping in 2010 is also provided. The difference between the executed number and the required number would be the extra days required. Since the alternatives require C.V.s for both species, the higher value for either blueback herring or alewife was used.

Table 11. Sea days associated with Alt. 5e C.V. targets.

<table>
<thead>
<tr>
<th></th>
<th>Mid-Atlantic MWT (CV = 0.3)</th>
<th>Mid-Atlantic MWT (CV = 0.2)</th>
<th>SMBT (CV = 0.3)</th>
<th>SMBT (CV = 0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Sea Days (2009)</td>
<td>541</td>
<td>751</td>
<td>3610</td>
<td>4889</td>
</tr>
<tr>
<td>Required Sea Days (2010)</td>
<td>308</td>
<td>409</td>
<td>2542</td>
<td>3982</td>
</tr>
<tr>
<td>Approx Days Provided in 2010</td>
<td>76</td>
<td>1132</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since the trip coverage to achieve a given C.V. fluctuates from year-to-year, one can never really guarantee a given C.V. will be reached. It may be quite difficult to consistently obtain precise catch estimates via observer data when the coverage levels are determined from prior years’ data for species that are not encountered that often in large quantities. However, the numbers in the table above suggest that around 65% coverage could result in a 0.3 C.V. goal and about 90% coverage could result in a 0.2 C.V. goal for Mid-Atlantic MWT and that for small mesh bottom trawl, around 40% coverage could result in a 0.3 C.V. goal and about 60% coverage could result...
in a 0.2 C.V. goal. This was determined by averaging the required sea days from 2009-2010, and then comparing those averages with total average days at sea for relevant trips from VTR data, 2009-2011. However it is emphasized that from year to year it will be very hard to hit a particular C.V. target due to the inherent variability from year to year in both the directed fisheries involved and their catch of river herrings. Since one cannot predict which years will require the highest coverage, some years would likely be over covered and some years would be under covered if coverage rates are determined by the previous year’s data. The monetary costs associated with these coverage levels are described in Section 7.

It is important to note that though the percent of coverage needed for small mesh bottom trawl may be lower than mid-water trawl for a given C.V., because of the much greater size of the small mesh bottom trawl fishery fleet (vessels and trips), a much higher number of sea days is required to achieve a given C.V. for small mesh bottom trawl.

A key issue with implementation of this alternative is that while the alternative is based on gear types which is how discard and catch estimates based on observer coverage are binned to get total estimates, the MAFMC can really only compel the fisheries it manages to carry and pay for observers. Since NMFS has indicated that it will only approve additional observer coverage on fisheries if it is funded by industry, and the MAFMC cannot compel fisheries out of its control to carry and pay for observers, there is a procedural tension inherent in this alternative.

What could occur if this alternative is selected, is that NMFS would use its observer allocation procedures to allocate the approximate level of coverage in Mid-Atlantic fisheries that would be needed as part of achieving the overall C.V. targets. So if this alternative was recommended, New England fisheries that use the relevant gear types would not be affected so the C.V. targets would not actually be reached but they would be improved related to increases in Mid-Atlantic fisheries. If New England approved measures consistent with these C.V. targets (including industry funding), the tension would be resolved however as all of the major fisheries with substantial RH catch would be covered.

5f. Vessels would have to pay $325 (modifiable via specifications) for observers when they carry observers to meet the observer coverage goals adopted by the Council in 5b4 and 5c4. NEFSC would accredit observers and vessels would have to contract and pay observers. (PREFERRED)

This alternative represents a modification from the original alternative in the DEIS. In the original alternative, vessels had to pay the full cost of observer days beyond the standard NMFS-established coverage. The Council modified this alternative such that vessels selected for coverage would have to pay $325 per day to fund the overall observer goals. Since the original alternative considered full industry funding of the required observer days, this is within the range between no funding and full funding. The original DEIS analyzed industry paying for 100% of the at-sea cost ($800) of all related observer trips due to the possibility of reduced federal
funding of observers in the future, so having all observed trips pay only $325 lies in between the no action and the original alternative.

NMFS has repeatedly stated that additional federal funding for observers is not available. This option would require that observer coverage on limited access mackerel and/or longfin squid moratorium vessels be funded by Federal resources, whenever they are available. To the extent that Federal resources are not available to fund observer coverage at levels consistent with the Amendment 14 provisions, vessels would be responsible for covering costs associated with contracting service providers for the additional observer coverage.

Non-government service providers could be used for sea sampling in the event that Federal funds are not sufficient to provide the desired level of coverage.

Vessel owners, operators, and/or representatives would be required to provide notice to NMFS and request an observer through the pre-trip notification system, consistent with the notification provisions described in this document.

If observer coverage must be procured through an independent service provider, NMFS would notify the vessel owner, operator, and/or representative of the requirement within 24 hours of the vessels’ notification to NMFS of the prospective trip. The vessel would be prohibited from fishing for, taking, possessing, or landing more than an incidental amount without carrying an observer for that trip unless the vessel has been issued a waiver. Any requirement to carry an observer on a particular trip may be waived by NMFS. All waivers for observer coverage will be issued to the vessel by VMS, fax, or email so as to have on-board verification of the waiver (see more information about waivers below).

Observer Service Provider Certification, Approval, Responsibilities
Regulations specifying the use of observer service providers are provided in 50 CFR 648.11(h) and (i) – Observer service provider approval and responsibilities and Observer certification and would apply to service providers for sea sampling if/when Federally-funded observers cannot be made available. These provisions are consistent with those for service providers in other Federal fisheries in the Northeast region (ex., sea scallops). NMFS could also authorize states as service providers if NMFS and the respective state have a memorandum of agreement regarding the collection and handling of data.

If this amendment requires the industry to pay for observer sea days that cannot be funded using Federal resources, the vessel owner/operator/manager would be required to arrange for carrying an observer from one of the service providers approved by NMFS (50 CFR 648.11(h) and (i)). The owner/operator/manager of a vessel selected to carry an observer must contact the observer service provider and must provide at least 48 hours’ notice in advance of the fishing trip for the provider to arrange for observer deployment for the specified trip. A list of approved service providers will be published on the NMFS/NEFOP website. If a certified observer cannot be procured within 48 hours of the advanced notification due to the unavailability of an observer, the vessel owner/operator/manager may request a waiver from NMFS/NEFOP from the requirement for observer coverage on that trip, but only if all of the available service providers
have been contacted in an attempt to secure observer coverage, and no observer is available. In this case, if appropriate, a waiver is to be issued by NMFS within 24 hours.

5g. Phase-in industry funding over 4 years such that to achieve the target coverage selected in 4b-4e above, NMFS would pay for 100%, 75%, 50%, then 25% of the at-sea portion of the specified observer coverage (NOTE: NMFS has indicated this is not feasible from a funding point of view).

This alternative could be selected in addition to 5f to phase-in industry funding over a 4 year period. NMFS would be likely to reject this alternative because of budget constraints.

5h. Require reevaluation of coverage requirement after 2 years to determine if catch rates justify continued expense of continued high coverage rates. *(PREFERRED)*

The Council would conduct an examination of the results of any higher coverage rates implemented through this action and consider if adjustments to the coverage rates are warranted. Depending on the results and desired actions, subsequent action could be accomplished via specifications, a framework adjustment, or an Amendment as appropriate and include appropriate analysis of impacts.
5.6 Alternative Set 6 - Mortality Caps

5.6.1 Statement of Problem/Need for Action

Catch of RH/S in the MSB fisheries may be negatively impacting RH/S populations. Estimates of current RH/S catches are summarized in Section 6.3 and detailed in Appendix 2. Due to the lack of comprehensive assessments for RH/S it is not possible to determine if current catch levels are, or are not, negatively impacting RH/S stocks.

5.6.3 General Rationale & Background

A cap on a certain fleet/fishery can keep mortality for the fleet/fishery at a certain level. If imprecision of catch estimates is high, the real catch may be substantially above or below any amount attained under a cap. Given the lack of reference points it would be difficult to establish an appropriate cap amount that is meaningfully tied to some impact on RH/S. One would either have to independently figure out how much overall RH catch one wanted and then allocate a portion of that to a cap or one could just look at what various fisheries have caught, and use that information to come up with an amount for a fishery-specific cap. For the mortality cap alternatives, the MSB Monitoring Committee would draft a range of caps for consideration through specifications. They would likely be based on some fraction of total estimated catch of RH/S as estimated in the appendices of this amendment. If an assessment of RH/S provided information on sustainable harvest that information could be used as well. Precision would likely be quite low under the status quo observer/monitoring regime.

A cap would operate much like the butterfish cap currently operates in the longfin squid fishery. As with the butterfish cap, the exact monitoring and extrapolation methodology would be developed during implementation and presented to the Council for comments before the cap became operational. However, the catch ratio would be based on the ratio of RH/S to total retained catch (i.e. landings), as appropriate depending on which, if any, action alternatives were chosen. This ratio comes from observer data in the butterfish cap and in the context of this amendment could come from observer data or potentially also port-side sampling data if implemented in this amendment. Then for a given fishery (mackerel or squid) as defined by trips over the incidental landings limit, the ratio is applied to all landings (from dealer data) by that fishery to extrapolate a total RH/S catch estimate. Technical details may be found in Wigley et al. (2007), with the modification of using “kept+discards” in the numerator rather than just discards since the focus is on total catch. Once the estimate reaches a closure threshold identified by the Council in the specifications process, then landings above an incidental nature (also specified during specifications) would be prohibited. The mortality cap would operate in parallel to monitoring for the directed fishery such that reaching either the closure threshold for the directed fishery or the mortality cap threshold would close the directed fishery.

It would probably make most sense to have a fleet-area cap (e.g., midwater trawls in Mid-Atlantic) rather than using the regulatory definition of a "Mackerel" or "Herring" trip to define vessels that are subject to the cap. In other words, the greatest amount of impact on RH/S catch
reduction would come from the implementation of a joint cap on both the herring & mackerel fleets. If one instituted just a cap on the mackerel fleets, one of two things could happen if the mackerel fishery was closed due to reaching the cap:

One possibility is that the mackerel fishery closes and the exact same fleet continues fishing in the exact same place (Mid-Atlantic Q1) and just retains the Atlantic herring catches and discards mackerel. Since catch per unit effort of the combined species would go down, overall effort could go up, possibly increasing RH/S catch.

Another possibility is that Q1 catches of mackerel and Atlantic herring in the Mid-Atlantic are so mixed that closing mackerel would effectively close herring.

Fleet-area caps are not currently feasible because herring is managed by the New England Fishery Management Council and its Amendment 5 to the Atlantic Herring FMP does not have complementary caps for the herring fishery. Amendment 5 does contain provisions for a cap to be added later and it is possible that the Mid-Atlantic Fishery Management Council could work with the New England Fishery Management Council to implement a joint cap at a later date.

For all of the mortality caps, once the cap or some fraction of the cap is reached (set in specifications) then the fishery would be closed (i.e., all possession would be prohibited) or an incidental trip limit would go into effect (also set in specifications).

It is possible that a single cap for RH/S combined may be used to implement the preferred alternatives 6b and 6c if the Council chooses to do so via the annual specifications.

PREFERRED ALTERNATIVES

Since RH/S catch is greatest in the mackerel fishery, and current analysis suggested that area-based management could not be determined to be an effective measure, the Council recommended mortality caps for RH/S on the mackerel fishery (6b and 6c). The impact of 6b and 6c will depend on what the cap is ultimately set at, and the cap will be set and analyzed through the annual specifications process. These preferred alternatives are designed to directly control RH/S mortality in the MSB fisheries. Additional future mortality caps were also made frameworkable actions (6f).

5.6.4 Management Alternatives

NOTE ON COMBINATIONS: All of the action alternatives in this Alternative Set could be implemented singly or in combination with any other alternative(s) in this Alternative Set.

Note: Since some of the alternatives below are very similar, they are grouped together for purposes of description.
6a. No-action

Under the no-action alternative, there would be no mortality caps for RH/S in the mackerel and/or longfin squid fisheries. State management of RH/S would continue (see 5.9.2) for state catches. The New England and Mid-Atlantic Fishery Management Council’s would continue to consider ways to reduce RH/S catch in their at-sea fisheries (and may implement other conservation measures in this amendment or Amendment 5 to the Atl Herring FMP) but there would be no hard caps on RH/S catch in the mackerel and/or longfin squid fisheries. The longfin squid fishery is currently subject to a mortality cap for butterfish, further described in section 6.7.4 and documents linked to from that section.

6b. Implement a mortality cap for river herrings for the mackerel fishery whereby the mackerel fishery would close once it is determined that it created a certain level of river herring mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S). (PREFERRED)

Annual cap amounts would be evaluated and set during the specifications process (though without comprehensive RH/S assessments it is not possible to determine if any particular quantity of RH/S catch is sustainable). The specifications process would also set the percentage that a cap closed at to avoid overages (probably 80% to 90%) as well as any incidental trips limits after a closure (probably 0 - 20,000 pounds – 20,000 pounds is the current post-closure incidental trip limit).

One way to assign mortality caps for river herring (and one which illustrates the potential effects or a range of cap levels) would be to base it on the range of estimated river herring mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic mid-water trawl (MWT) fishing in Quarter 1, which is largely but not completely mackerel fishing, accounted for 35% of total river herring mortality 2005-2010. MWT fishing in Quarter 1 is mixed, with mackerel comprising over 50% of the landings, but herring making up a large amount of landings in January (see Figure 21A of Appendix 2). The table below describes total ocean and Quarter 1 mid-water trawl mortalities.
Table 12. Example River Herring Caps for Mackerel

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Water Trawl Quarter 1 mortality (35% of total) = Mortality Cap Possibility</th>
<th>Mackerel would close at these landings (mt) with high ratio, 0.86%</th>
<th>Mackerel would close at these landings (mt) with mean ratio, 0.45%</th>
<th>Mackerel would close at these landings (mt) with low ratio, 0.02%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>245</td>
<td>86</td>
<td>9,975</td>
<td>19,063</td>
<td>428,908</td>
</tr>
<tr>
<td>2007</td>
<td>664</td>
<td>232</td>
<td>27,029</td>
<td>51,656</td>
<td>1,162,263</td>
</tr>
<tr>
<td>2008</td>
<td>672</td>
<td>235</td>
<td>27,333</td>
<td>52,237</td>
<td>1,175,335</td>
</tr>
<tr>
<td>2009</td>
<td>361</td>
<td>126</td>
<td>14,679</td>
<td>28,053</td>
<td>631,190</td>
</tr>
<tr>
<td>2010</td>
<td>244</td>
<td>85</td>
<td>9,911</td>
<td>18,940</td>
<td>426,160</td>
</tr>
</tbody>
</table>

Using the ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 50% or at least 100,000 pounds of mackerel (encompasses almost all landings) results in annual river herring mortality ratios from 0.02% in 2007 to .86% in 2009 with a mean of 0.45. The 50%/100,000 filter was used because it has been the way directed mackerel trips have been identified in recent specifications analyses and because this definition encompasses almost all landings. The exact definition of a mackerel trip would be developed in the implementation process, as has been the case with the butterfish cap for the longfin squid fishery.

If these values were used with the above range of mortality caps, the amount of total fish (the ratio is based on all fish retained) that could be harvested by trips as defined above before the mackerel fishery was shut down by the river herring mortality cap is illustrated on the three rightmost columns in the above table (these can be compared to recent mackerel landings detailed in Section 6.7.1). A high ratio means that more river herring were caught and a low ratio means that less river herring were caught. The examples in the above table come for observed data 2006-2010. The main point is that whether mackerel would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of river herring was, and what the mackerel availability was. Since the realized ratio can vary substantially from year to year, it is not possible to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all. If the ratio is very low, the fishery would be allowed to continue operating, as a closure would occur at a landings level much higher than recent quotas. If the ratio is very high, a closure could occur early in the season.

For example in the above table, in 2010 it was estimated that Quarter 1 MWT river herring mortality was 85mt. If an 85mt cap was used, and the fishery experienced a high river herring catch ratio of 0.86%, the cap would be used up when mackerel trips had caught about 9,911 mt of fish. If lower ratios were observed, then more fish could be caught by the mackerel fishery before it was closed by a cap. Likewise, if the cap was set higher, then more fish could be caught by the mackerel fishery before it was closed by a cap.
6c. Implement a mortality cap for shads for the mackerel fishery whereby the mackerel fishery would close once it is determined that it created a certain level of shad mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S). (PREFERRED)

Annual cap amounts would be evaluated and set during the specifications process. The specifications process would also set the percentage that a cap closed at to avoid overages (probably 80% to 90%) as well as any incidental trips limits after a closure (probably 0 - 20,000 pounds – 20,000 pounds is the current post-closure incidental trip limit).

One way to assign mortality caps for shad (and one which illustrates the potential effects or a range of cap levels) would be to base it on the range of estimated shad mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic mid-water trawl fishing in Quarter 1, which is largely but not completely mackerel fishing, accounted for 12% of total shad mortality 2005-2010. The table below describes total ocean and quarter 1 mid-water trawl mortalities in the leftmost columns (2006 omitted because of lack of shad records).

Table 13. Example Shad Caps for Mackerel

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Water Trawl Quarter 1 mortality (mt) (12% of total) = Mortality Cap Possibility</th>
<th>Mackerel would close at these landings (mt) with high ratio, 0.05%</th>
<th>Mackerel would close at these landings (mt) with mean ratio, 0.03%</th>
<th>Mackerel would close at these landings (mt) with low ratio, 0.004%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>60</td>
<td>7</td>
<td>14,364</td>
<td>23,940</td>
<td>179,550</td>
</tr>
<tr>
<td>2008</td>
<td>60</td>
<td>7</td>
<td>14,450</td>
<td>24,084</td>
<td>180,630</td>
</tr>
<tr>
<td>2009</td>
<td>70</td>
<td>8</td>
<td>16,903</td>
<td>28,172</td>
<td>211,290</td>
</tr>
<tr>
<td>2010</td>
<td>47</td>
<td>6</td>
<td>11,338</td>
<td>18,896</td>
<td>141,720</td>
</tr>
</tbody>
</table>

Using the ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 50% or at least 100,000 pounds of mackerel (encompasses almost all landings) results in annual shad mortality ratios from 0.004% in 2009 to 0.05% in 2007 with a mean of 0.03. The 50%/100,000 filter was used because it has been the way directed mackerel trips have been identified in recent specifications analyses and because this definition encompasses almost all landings. The exact definition of a mackerel trip would be developed in the implementation process, as has been the case with the butterfish cap for the longfin squid fishery.

If these values were used with the above range of mortality caps, the amount of total fish (the ratio is based on all fish retained) that could be harvested by trips as defined above before the mackerel fishery was shut down by the shad mortality cap is illustrated on the rightmost three
columns in the above table (these can be compared to recent mackerel landings detailed in Section 6.7.1). A high ratio means that more shad were caught and a low ratio means that less shad were caught. The examples in the above table come for observed data 2006-2010. The main point is that whether mackerel would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of shad was, and what the mackerel availability was. Since the realized ratio can vary substantially from year to year, it is not possible to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all. If the ratio is very low, the fishery would be allowed to continue operating, as a closure would occur at a landings level much higher than recent quotas. If the ratio is very high, a closure could occur early in the season.

For example in the above table, in 2010 it was estimated that quarter 1 MWT shad mortality was 6mt. If an 6mt cap was used, and the fishery experienced a high shad catch ratio of 0.05%, the cap would be used up when mackerel trips had caught about 11,338 mt of fish. If lower ratios were observed, then more fish could be caught by the mackerel fishery before it was closed by a cap. Likewise, if the cap was set higher, then more fish could be caught by the mackerel fishery before it was closed by a cap.

6d. Implement a mortality cap for river herrings for the longfin squid fishery whereby the longfin squid fishery would close once it is determined that it created a certain level of river herring mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S). (The Council chose No Action for the longfin fishery for this measure.)

Annual cap amounts would be evaluated and set during the specifications process. The specifications process would also set the percentage that a cap closed at to avoid overages (probably 80% to 90%) as well as any incidental trips limits after a closure (probably 2,500 pounds, the current incidental trip limit). Since the longfin squid fishery operates by four-month trimesters, the Council could choose to allocate a cap by trimesters as well, and this would be evaluated during specifications.

One way to assign mortality caps for river herring (and one which illustrates the potential effects or a range of cap levels) would be to base it on the range of estimated river herring mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic small mesh bottom trawl accounted for 5% of total river herring mortality. While Mid-Atlantic small mesh bottom trawl encompasses a variety of fisheries besides longfin squid (including Atlantic herring), some of the New England small mesh bottom trawl mortality is probably related to longfin squid fishing so using the full Mid-Atlantic value is probably reasonable. The table below describes total ocean and 5% of total mortalities in the leftmost columns.
<table>
<thead>
<tr>
<th>Year</th>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Atlantic Small Mesh Bottom Trawl Mortality (mt) (5% of total) = Mortality Cap Possibility</th>
<th>Longfin squid would close at these landings (mt) with high ratio, 0.17%</th>
<th>Longfin squid would close at these landings (mt) with mean ratio, 0.06%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>245</td>
<td>12</td>
<td>7,233</td>
<td>20,424</td>
</tr>
<tr>
<td>2007</td>
<td>664</td>
<td>33</td>
<td>19,534</td>
<td>55,346</td>
</tr>
<tr>
<td>2008</td>
<td>672</td>
<td>34</td>
<td>19,754</td>
<td>55,968</td>
</tr>
<tr>
<td>2009</td>
<td>361</td>
<td>18</td>
<td>10,608</td>
<td>30,057</td>
</tr>
<tr>
<td>2010</td>
<td>244</td>
<td>12</td>
<td>7,162</td>
<td>20,293</td>
</tr>
</tbody>
</table>

Using the ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 2,500 pounds longfin squid results in annual river herring mortality ratios from almost zero in 2007 to .17% in 2009 with a mean of 0.06%. The 2,500 pound filter was used because it has been the way directed longfin squid trips have been identified in the butterfish cap for the longfin squid fishery and because is encompasses almost all longfin squid landings. The exact definition of a longfin squid trip would be developed in the implementation process, as has been the case with the butterfish cap for the longfin squid fishery.

If these values were used with the above range of mortality caps, the amount of total fish (the ratio is based on all fish retained) that could be harvested by trips as defined above before the longfin squid fishery was shut down by the river herring mortality cap is illustrated on the rightmost columns in the above table (these can be compared to recent longfin squid landings detailed in Section 6.7.4). A high ratio means that more river herring were caught and a low ratio means that less river herring were caught. The examples in the above table come for observed data 2006-2010. The main point is that whether longfin squid would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of river herring was, and what the longfin squid availability was. Since the realized ratio can vary substantially from year to year, it is not possible to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all. If the ratio is very low, the fishery would be allowed to continue operating, as a closure would occur at a landings level much higher than recent quotas. If the ratio is very high, a closure could occur early in the season.

For example in the above table, in 2010 it was estimated that Mid-Atlantic small mesh bottom trawl river herring mortality was 12mt. If a 12mt cap was used, and the fishery experienced a high river herring catch ratio of 0.17%, the cap would be used up when longfin squid trips had caught about 7,162 mt of fish. If lower ratios were observed, then more fish could be caught by the longfin squid fishery before it was closed by a cap. Likewise, if the cap was set higher, then more fish could be caught by the longfin squid fishery before it was closed by a cap.
6e. Implement a mortality cap for shads for the longfin squid fishery whereby the longfin squid fishery would close once it is determined that it created a certain level of shad mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S). (The Council chose No Action for the longfin fishery for this measure.)

Annual cap amounts would be evaluated and set during the specifications process. The specifications process would also set the percentage that a cap closed at to avoid overages (probably 80% to 90%) as well as any incidental trips limits after a closure (probably 2,500 pounds, the current incidental trip limit). Since the longfin squid fishery operates by four-month trimesters, the Council could choose to allocate a cap by trimesters as well, and this would be evaluated during specifications.

One way to assign mortality caps for shad (and one which illustrates the potential effects or a range of cap levels) would be to base it on the range of estimated shad mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic small mesh bottom trawl accounted for 11.5% of total shad mortality. While Mid-Atlantic small mesh bottom trawl encompasses a variety of fisheries besides longfin squid (including Atlantic herring), some of the New England small mesh bottom trawl mortality is probably related to longfin squid fishing so using the full Mid-Atlantic value is probably reasonable. The table below describes total ocean and 11.5% of total mortalities in the leftmost columns.

Table 15. Example Shad Caps for Longfin

<table>
<thead>
<tr>
<th></th>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Atlantic Small Mesh Bottom Trawl Mortality (mt) (11.5% of total) = Mortality Cap Possibility</th>
<th>Longfin squid would close at these landings (mt) with high ratio, 0.21%</th>
<th>Longfin squid would close at these landings (mt) with mean ratio, 0.10%</th>
<th>Longfin squid would close at these landings (mt) with low ratio, 0.03%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>47</td>
<td>5</td>
<td>2,587</td>
<td>5,433</td>
<td>18,109</td>
</tr>
<tr>
<td>2007</td>
<td>60</td>
<td>7</td>
<td>3,278</td>
<td>6,883</td>
<td>22,943</td>
</tr>
<tr>
<td>2008</td>
<td>60</td>
<td>7</td>
<td>3,297</td>
<td>6,924</td>
<td>23,081</td>
</tr>
<tr>
<td>2009</td>
<td>70</td>
<td>8</td>
<td>3,857</td>
<td>8,099</td>
<td>26,998</td>
</tr>
<tr>
<td>2010</td>
<td>47</td>
<td>5</td>
<td>2,587</td>
<td>5,433</td>
<td>18,109</td>
</tr>
</tbody>
</table>

Using the ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 2,500 pounds longfin squid results in annual shad mortality ratios from almost 0.03% in 2009 to 0.21% in 2010 with a mean of 0.10%. The 2,500 pound filter was used because it has been the way directed longfin squid trips have been identified in the butterfish cap for the longfin squid fishery and because it encompasses almost all longfin squid landings. The exact definition of a longfin squid trip would be developed in the implementation process, as has been the case with the butterfish cap for the longfin squid fishery.
If these values were used with the above range of mortality caps, the amount of total fish (the ratio is based on all fish retained) that could be harvested by trips as defined above before the longfin squid fishery was shut down by the shad mortality cap is illustrated on the rightmost columns in the above table (these can be compared to recent longfin squid landings detailed in Section 6.7.4). A high ratio means that more shad were caught and a low ratio means that less shad were caught. The examples in the above table come for observed data 2006-2010. The main point is that whether longfin squid would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of shad was, and what the longfin squid availability was. Since the realized ratio can vary substantially from year to year, it is not possible to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all. If the ratio is very low, the fishery would be allowed to continue operating, as a closure would occur at a landings level much higher than recent quotas. If the ratio is very high, a closure could occur early in the season.

For example in the above table, in 2010 it was estimated that Mid-Atlantic small mesh bottom trawl shad mortality was 5mt. If a 5mt cap was used, and the fishery experienced a high shad catch ratio of 0.21%, the cap would be used up when longfin squid trips had caught about 2,587 mt of fish. If lower ratios were observed, then more fish could be caught by the longfin squid fishery before it was closed by a cap. Likewise, if the cap was set higher, then more fish could be caught by the longfin squid fishery before it was closed by a cap.

6f. Add mortality caps to list of measures that can be frameworked. (PREFERRED)

This alternative would allow the kinds of mortality caps considered in this document to be reconsidered and implemented at a future time via a streamlined framework amendment process. Such an action would be justifiable because it would be part of an existing overall strategy to reduce RH/S catches. Additional analysis will be competed if and when additional frameworks are initiated.
5.7 Alternative Set 7 – Restrictions in areas of high RH/S catch

5.7.1 Statement of Problem/Need for Action

Catch of RH/S in the mackerel and longfin squid fisheries may be negatively impacting RH/S populations. There are state possession limits and landings requirements but there are currently no limits on catch of RH/S in Federal fisheries. National Standard 9 mandates that the Council reduce discards to the extent practicable and MSA provides discretionary authority for the Council to reduce non-target RH/S catch in the mackerel and longfin squid fisheries (see Section 4). Area-based restrictions could be a way of reducing RH/S catch in these fisheries.

5.7.2 General Rationale & Background

The Council originally hoped to include some alternatives that would restrict fishing in relatively small areas that appeared to be “hotspots” for RH/S catch. Based on NMFS NEFSC analysis the Amendment’s Fishery Management Action Team’s found that because of the wide and variable distribution of RH/S, small-area management is unlikely to be successful (Appendices 1-2 and summary of RH/S catch analysis in Section 6.3). Because the Council instructed the FMAT to generate area-based alternatives that would be likely to provide protection to RH/S, the FMAT generated several area alternatives that cover very large areas, but acknowledged that such large-scale area restrictions could, in some alternatives, effectively close the fisheries for many participants. Council staff attempted to perform additional smaller-scale examinations of the data (for example around Hudson Canyon) but at such small scales there are too few observations to draw meaningful conclusions about the potential of small-scale area restrictions for reducing RH/S encounters.

Staff also investigated if small areas in federal waters but near major river mouths might be an appropriate strategy. However, little is known about fine scale migration patterns once RH/S are in the ocean and there is no evidence that there are staging aggregations (schools of RH/S near river mouths) in federal waters that would lend themselves to such approaches (pers com K. Taylor, ASMFC, W. Laney, U.S. Fish and Wildlife Service).

The FMAT analysis suggests that because of the spatial and temporal variability of observed (Northeast Fishery Observer Program or “NEFOP”) RH/S catch, the same kind of variability in mackerel and longfin squid effort and catch, and the same kind of variability in RH/S NEFSC trawl survey catches, that very large areas would be required to ensure that management was not just redistributing effort, possibly in a way that even increased RH/S catch. For this reason Council staff used the FMAT GIS analysis (Appendix 2) to construct areas for mackerel and longfin squid based on the mid-water and small-mesh bottom trawl fleet effort data and RH/S catch data. The table below is designed to help illustrate how even if you reduce catch rates of one species, for example blueback, but reduce catch rates of the directed species (for example mackerel) even more, it can be possible to do more harm than good if the fleet increases effort to maintain the same amount of harvest. For example if blueback catches were “a little lower” but mackerel catches were “a lot lower” and the fleet increased effort in response, a large increase in
effort could result in higher total blueback catches even if the rate of blueback catches declined somewhat. Since the relative changes in catch rates are not possible to predict currently, one cannot predict the impact on RH/S catches of small area closures for directed mackerel and/or longfin squid fisheries. To clarify, in the table below "good" means a net reduction of blueback catch, "negligible" means no appreciable change, and "bad" means a net increase in blueback catch. The general point is that if RH/S catch rates are reduced but targeted species catch rates are reduced more, the net effect (because of more overall effort) may be bad for RH/S.

Table 16. Direct/Non-Target Impact Schematic

<table>
<thead>
<tr>
<th></th>
<th>Mackerel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blueback</td>
<td></td>
</tr>
<tr>
<td>CPUE Changes</td>
<td>neutral</td>
</tr>
<tr>
<td></td>
<td>a little lower</td>
</tr>
<tr>
<td></td>
<td>a lot lower</td>
</tr>
<tr>
<td>neutral</td>
<td>negligible</td>
</tr>
<tr>
<td>a little lower</td>
<td>good</td>
</tr>
<tr>
<td>a lot lower</td>
<td>good</td>
</tr>
</tbody>
</table>

So the question then becomes can one quantify what would happen to the target and non-target catch if effort is shifted because of a closed area. The results of analyses to-date (spatial-temporal effort variability, spatial-temporal directed catch variability, spatial-temporal RH/S catch variability (observer data), and spatial-temporal catch variability of RH/S in the NEFSC spring and fall bottom trawl surveys) all suggest that it is not currently possible to determine whether any small closed area would lead to LESS, the SAME, OR MORE RH/S catch. To implement area-based management, a very large area would need to be used, and it would need to also encompass different areas seasonally to incorporate the herring fishery to be effective, to know that positive impacts resulted for RH/S (probably not practicable if also trying to maintain some portion of a directed fishery).

At one point in amendment development council technical staff considered recommending to the Council that these area-based measures be removed from the document. However, this recommendation was ultimately not made analyzing these measures does help illustrate the difficulties of dealing with RH/S encounters with an area-based approach.

To create easy to understand and reasonably enforceable areas, simple rectangles were used. In application, the closures would only apply in federal waters within those rectangles.

PREFERRED ALTERNATIVES

Since area-based management could not be determined to be an effective measure, the Council recommended no action for all alternatives in this alternative set.
5.7.3 Management Alternatives

NOTE ON COMBINATIONS: 7bMack and 7cMack are mutually exclusive – the Council could close the area to directed fishing (7bMack) or require observers (7cMack) but not both. Likewise 7bLong and 7cLong are mutually exclusive – the Council could close the area to directed fishing (7bLong) or require observers (7cLong) but not both. One of the mackerel alternatives (either 7bMack or 7cMack) could be combined with one of the longfin squid alternatives (either 7bLong or 7cLong) however. 7d could be added to any 7b or 7c alternative to make those provisions only applicable after a cap-based trigger was reached. The Council would have to specify in this case that the Alternative Set 6 cap trigger was only a trigger for Alternative Set 7 rather than a stand-alone cap measure. 7e could be chosen in addition to any other alternative in this Alternative Set.

Given the overlapping nature of Alternative Sets 7 and 8, it is not expected that alternatives would be chosen from both Alternative Sets 7 and 8 for one fishery. One could select an alternative for the longfin squid fishery from one set and for the mackerel fishery from another set, but not from both sets for one fishery.

The enforceability of area-based management alternatives could be facilitated by the selection of the vessel monitoring system (VMS) requirement in Alternative Set 1 (alternatives 1eMack or 1eLong).

The selection of alternatives that include observer coverage requirements (7cMack and 7cLong) would require the selection of observer program notification alternatives for limited access mackerel permits in Alternative Set 1(1d48 and 1d72).

7a. No-action regarding large closed areas (PREFERRED)

Under the no-action alternative, there would be no area-based restrictions on the mackerel and/or longfin squid fisheries that are designed to reduce catch of RH/S. State management of RH/S would continue (see 5.9.2) for state catches. The New England and Mid-Atlantic Fishery Management Council’s would continue to consider ways to reduce RH/S catch in their at-sea fisheries (and may implement other conservation measures in this amendment or Amendment 5 to the Atl Herring FMP) but there would be no area-based restrictions on the mackerel and/or longfin squid fisheries that are designed to reduce catch of RH/S. There are other area-based closures for bottom trawling already in effect (e.g. black and yellow dashed areas on figures 18-20) related to catch of other fish, habitat, or other issues and these restrictions would remain in effect. Details and charts for existing area-based restrictions may be found at: http://www.nero.noaa.gov/nero/fishermen/charts.html. Some alternatives in the set would
require additional observer coverage but under the no-action alternative the current observer coverage levels would continue (see 5.5.2 and 5.5.3).

7bMack. Closed Area - Prohibit retention of more than 20,000 pounds of mackerel in RH/S Mackerel Management Area (applies in quarter 1 only – see map below) for vessels with federal mackerel permits.

The RH/S Mackerel Management Area (see figure below) encompasses most quarter-one mid-water trawl effort as well as most quarter-one observer data observations of RH/S catch, which are estimated to account for 35% of total RH/S catch (See Appendix 2). This alternative would close this area to directed mackerel fishing.

7bLong. Closed Area - Prohibit retention of more than 2,500 pounds longfin squid in RH/S Longfin Squid Management Area (applies year-round – see maps below) for vessels with federal longfin squid moratorium permits.

The RH/S Longfin Squid Management Area encompasses most small mesh bottom trawl effort, which is responsible for 24% of RH/S catch (see Appendix 2). This alternative would close this area to directed longfin squid fishing.

7cMack. Require observers in RH/S Mackerel Management Area (applies in quarter 1 only – see map below) for vessels with federal mackerel permits to retain more than 20,000 pounds of mackerel. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries). NEFSC would accredit observers and vessels would have to contract and pay observers.

The RH/S Mackerel Management Area (see figure below) encompasses most quarter-one mid-water trawl effort as well as most quarter-one observer data observations of RH/S catch, which are estimated to account for 35% of total RH/S catch. This alternative would close this area to directed mackerel fishing unless vessels paid to take an observer along if federal funding for an observer was not available. See alternative 5f for funding/operational details.

If an overall observer coverage requirement in Alternative Set 5 was selected but did not result in a trip covered by an alternative in this Alternative Set having an observer, this Alternative Set would effectively require additional coverage.

7cLong. Require observers in RH/S longfin squid Management Area (applies year round) for vessels with federal longfin squid permits to possess more than 2,500 pounds of longfin squid. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries). NEFSC would accredit observers and vessels would have to contract and pay observers.
The RH/S Longfin Squid Management Area encompasses most small mesh bottom trawl effort, which is responsible for 24% of RH/S catch. This alternative would close this area to directed longfin squid fishing unless vessels paid to take an observer along if federal funding for an observer was not available. See alternative 5f for funding/operational details.

If an overall observer coverage requirement in Alternative Set 5 was selected but did not result in a trip covered by an alternative in this Alternative Set having an observer, this Alternative Set would effectively require additional coverage.

7d. Make above requirement(s) in effect only when a mortality cap "trigger" is reached. Operation of a “trigger” would be identical to the operation of a mortality cap (see Alternative Set 6 above) but the consequence of hitting the cap would be implementing 7b and/or 7c above if this alternative is selected in conjunction with 7b and/or 7c above. Trigger levels would be specified annually via specifications.

This option would use a mortality cap but instead of shutting down the fishery either the closed area or 100% observer coverage requirements in this Alternative Set would go into force. This alternative could only be selected in conjunction with 7b and/or 7c above. Alternative Set 6 above describes how a mortality cap would work.

7e. Stipulate that any areas designated in Amendment 14 would be considered for updating every other year in specifications considering the most recent data available when specifications are developed.

This alternative would commit the Council to re-evaluate the designated areas every other year during the specifications process. The impacts of any potential revised areas will be evaluated in the NEPA documentation for the annual specifications that considered the changes.
Figure 18. RH/S Mackerel Management Area
Figure 19. RH/S longfin squid Management Area over small mesh bottom effort and RH/S Catch (Quarters 1 and 2)

Figure 33. Spatial distribution of nominal effort (days fished from Vessel Trip Reports) for the small mesh (codend mesh ≤ 3.5 in.) bottom trawl fleet and the fleet’s incidental catch rates (kept+discarded weight/days fished from observed NEFOP trips) of alewife, blueback herring, hickory shad, and American shad combined, by ten-minute square, during Quarter 1 (left) and 2 (right) for 2005-2010.
Figure 20. RH/S Longfin Squid Management Area over small mesh bottom effort and RH/S Catch (Quarters 3 and 4)

Figure 34. Spatial distribution of nominal effort (days fished from Vessel Trip Reports) for the small mesh (codend mesh ≤ 3.5 in.) bottom trawl fleet and the fleet's incidental catch rates (kept+discarded weight/days fished from observed NEFOP trips) of alewife, blueback herring, hickory shad, and American shad combined, by ten-minute square, during Quarter 3 (left) and 4 (right) for 2005-2010.
5.8 Alternative Set 8 – Hotspot Restrictions

5.8.1 Statement of Problem/Need for Action

There are currently no limits on catch of RH/S in the mackerel and/or longfin squid fisheries other than state landing requirements.

5.8.2 General Rationale & Background

The New England Fishery Management Council developed a variety of “Hotspot” alternatives in Amendment 5 to the Atlantic Herring Plan. All of the areas contemplated are relatively small and consider different restrictions within the hotspots. Since Atlantic herring and mackerel are often targeted by the same vessels and are sometimes targeted together at the same time, it makes sense to consider these alternatives even though they were based on observer data from “herring trips” as defined below. This would help ensure consistency among vessels targeting mackerel and Atl. herring.

The smallest areas are termed “River Herring Protection Areas.” These Protection Areas were identified bimonthly as the quarter degree squares with at least one observed tow of river herring catch greater than 1,233 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring during the respective 2-month period. The protection areas include just the portion of the monitoring/avoidance areas (described below) that have the highest river herring catches on Atlantic herring trips as defined above. Since the raw observer data were pooled across years, the threshold was only one tow, and the results are only from Herring Trips, they do not reflect how much total river herring was caught in the Protection Area versus other areas in a given year.

Slightly larger areas are termed “River Herring Monitoring/Avoidance Areas.” These Monitoring/Avoidance Areas were identified bimonthly as the quarter degree squares with at least one observed tow of river herring catch greater than 40 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring during the respective 2-month period. They include all of the area identified in the protection areas as well is areas where a more modest amount of river herring was caught. Since the raw observer data were pooled across years, the threshold was only one tow, and the results are only from Herring Trips, they do not reflect how much total river herring was caught in the Monitoring/Avoidance Areas versus other areas in a given year.

These protection and monitoring/avoidance areas are mapped below by their respective bi-monthly periods. Since seeing them on the same page clarifies the differences among the areas, they are illustrated together below (where applicable). Management measures that could apply to these areas follow the maps.

PREFERRED ALTERNATIVES

Since area-based management could not be determined to be an effective measure, the Council only recommended that hotspot measures as contemplated in this alternative set be made frameworkable so that expedited actions could be taken in the future if appropriate.
5.8.3 Management Alternatives

Figure 21. January – February Herring Area

Protection Area (highest catch records from Monitoring/Avoidance Area)
Figure 22: March – April Herring Area

Protection Area (highest catch records from Monitoring/Avoidance Area)

Monitoring/Avoidance Area
None proposed – there were no qualifying observer records (quarter degree squares with at least one observed tow of river herring catch greater than 1,233 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring).

THIS SECTION INTENTIONALLY LEFT BLANK

Monitoring/Avoidance Area
Figure 24. July – August Herring Area

Protection Area

None proposed – there were no qualifying observer records (quarter degree squares with at least one observed tow of river herring catch greater than 1,233 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring).

THIS SECTION INTENTIONALLY LEFT BLANK

Monitoring/Avoidance Area

![Diagram of river herring monitoring/avoidance areas]
Figure 25. September – October Herring Area

Protection Area (highest catch records from Monitoring/Avoidance Area)

Monitoring/Avoidance Area
Figure 26. November – December Herring Area

Protection Area (highest catch records from Monitoring/Avoidance Area)

Monitoring/Avoidance Area
NOTE ON COMBINATIONS: All of the action alternatives in the set could be adopted individually or together. 8f, which would make any of the requirements selected in this Alternative Set only applicable when the same measures were in effect for the Atlantic Herring fishery, would only be chosen if at least one alternative among 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong was also chosen.

Given the overlapping nature of Alternative Sets 7 and 8, it is not expected that alternatives would be chosen from both Alternative Sets 7 and 8 for one fishery. One could select an alternative for the longfin squid fishery from one set and for the mackerel fishery from another set, but not from both sets for one fishery.

The enforceability of area-based management alternatives could be facilitated by the selection of the vessel monitoring system (VMS) requirement in Alternative Set 1 (alternatives 1eMack or 1eLong).

The selection of alternatives that include observer coverage requirements (8cMack and 8cLong) would require the selection of observer program notification alternatives for limited access mackerel permits in Alternative Set 1(1d48 and 1d72).

If an overall observer coverage requirement in Alternative Set 5 was selected but did not result in a trip covered by an alternative in this Alternative Set having an observer, this Alternative Set would effectively require additional coverage.

8a. No-action

Under the no-action alternative, there would be no area-based restrictions on the mackerel and/or longfin squid fisheries that are designed to reduce catch of RH/S. State management of RH/S would continue (see 5.9.2) for state catches. The New England and Mid-Atlantic Fishery Management Council’s would continue to consider ways to reduce RH/S catch in their at-sea fisheries (and may implement other conservation measures in this amendment or Amendment 5 to the Atl Herring FMP) but there would be no area-based restrictions on the mackerel and/or longfin squid fisheries that are designed to reduce catch of RH/S. There are other area-based closures for bottom trawling already in effect (e.g. black and yellow dashed areas on figures 18-20) related to catch of other fish, habitat, or other issues and these restrictions would remain in effect. Details and charts for existing area-based restrictions may be found at: http://www.nero.noaa.gov/nero/fishermen/charts.html. Some alternatives in the set would require additional observer coverage but under the no-action alternative the current observer coverage levels would continue (see 5.5.2 and 5.5.3).
8b. Make implementing area-based "hotspot closures" to reduce catches (similar to those considered in NEFMC’s Amendment 5 to the Atlantic Herring Plan) frameworkable. (PREFERRED)

The wording of this alternative has been modified from the DEIS to clarify the Council's intent but the substance of the alternative has not changed.

The Council chose No Action regarding the hotspot measures but via 8b the Council would make the hotspot requirements considered below frameworkable under a subsequent action. A framework would have to be initiated to consider hotspot measures in the future and additional analysis will be competed if and when additional frameworks are initiated.

8cMack. For Atlantic mackerel permitted vessels, more than an incidental level of fish (20,000 pounds mackerel) may not be retained/transfered/ possessed if any fishing occurs in a River Herring Monitoring/Avoidance Area without a NMFS-approved observer at any point during the trip. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries).

8cMack would prohibit directed mackerel fishing in a River Herring Monitoring/Avoidance Area without a NMFS-approved and possibly industry funded (if necessary) observer at any point during the trip. See alternative 5f for funding/operational details.

8cLong. For longfin squid permitted vessels, more than an incidental level of fish (2,500 pounds longfin squid) may not be retained/transfered/ possessed if any fishing occurs in a River Herring Monitoring/Avoidance Area without a NMFS-approved observer at any point during the trip. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries).

8cLong would prohibit directed longfin squid fishing in a River Herring Monitoring/Avoidance Area without a NMFS-approved and possibly industry funded (if necessary) observer at any point during the trip. See alternative 5f for funding/operational details.

8dMack. If a mackerel-permitted vessel is fishing in any River Herring Monitoring/Avoidance Areas identified in this alternative with an observer onboard, vessels would be required to pump/haul aboard all fish from the net for inspection and sampling by the observer. Vessels that do not pump fish would be required to bring all fish aboard the vessel for inspection and sampling by the observer. Unless specific conditions are met (see below), vessels would be prohibited from releasing fish from the net, transferring fish to another vessel that is not carrying a NMFS-
approved observer, or otherwise discarding fish at sea, unless the fish have first been brought aboard the vessel and made available for sampling and inspection by the NMFS-approved observer.

• Vessels may make short test tows in the area to check the abundance of target and non-target catch without pumping the fish on board if the net is reset without releasing the contents of the test tow. In this circumstance, catch from the test tow would remain in the net and would be available to the observer to sample when the subsequent tow is pumped out.

• Fish that have not been pumped aboard may be released if the vessel operator finds that:
 1. pumping the catch could compromise the safety of the vessel;
 2. mechanical failure precludes bringing some or all of the catch aboard the vessel; or
 3. spiny dogfish have clogged the pump and consequently prevent pumping of the rest of the catch.

• If the net is released for any of the reasons stated above, the vessel operator would be required to complete and sign a Released Catch Affidavit providing information about where, when, and why the net was released, as well as a good-faith estimate of the total weight of fish caught on the tow and weight of fish released. The Released Catch Affidavit must be submitted within 48 hours of completion of the fishing trip.

• Following the release of the net for one of the three exemptions specified above, the vessel would be required to exit the River Herring Monitoring/Avoidance Area. The vessel may continue to fish but may not fish in the River Herring Monitoring/Avoidance Areas for the remainder of the trip.

8dLong. If a longfin squid-permitted vessel is fishing in a River Herring Monitoring/Avoidance Areas identified in this alternative with an observer onboard, vessels would be required to pump/haul aboard all fish from the net for inspection and sampling by the observer. Vessels that do not pump fish would be required to bring all fish aboard the vessel for inspection and sampling by the observer. Unless specific conditions are met (see below), vessels would be prohibited from releasing fish from the net, transferring fish to another vessel that is not carrying a NMFS-approved observer, or otherwise discarding fish at sea, unless the fish have first been brought aboard the vessel and made available for sampling and inspection by the NMFS-approved observer.

• Vessels may make short test tows in the area to check the abundance of target and non-target catch without pumping the fish on board if the net is reset without releasing the contents of the test tow. In this circumstance, catch from the test tow would remain in the net and would be available to the observer to sample when the subsequent tow is pumped out.

• Fish that have not been pumped aboard may be released if the vessel operator finds that:
 1. pumping the catch could compromise the safety of the vessel;
 2. mechanical failure precludes bringing some or all of the catch aboard the vessel; or
 3. spiny dogfish have clogged the pump and consequently prevent pumping of the rest of the catch.

• If the net is released for any of the reasons stated above, the vessel operator would be required to complete and sign a Released Catch Affidavit providing information about where, when, and why the net was released, as well as a good-faith estimate of the total weight of fish caught on the tow and weight of fish released. The Released Catch Affidavit must be submitted within 48 hours of completion of the fishing trip.
• Following the release of the net for one of the three exemptions specified above, the vessel would be required to exit the River Herring Monitoring/Avoidance Area. The vessel may continue to fish but may not fish in the River Herring Monitoring/Avoidance Areas for the remainder of the trip.

8eMack. Vessels possessing a federal mackerel permit would not be able to retain, possess or transfer more than an incidental level of fish (20,000 pounds mackerel) while in a River Herring Protection Area unless no mesh smaller than 5.5 inches is onboard the vessel.

8eMack would prohibit directed mackerel fishing in a River Herring Protection Area unless no mesh smaller than 5.5 inches was onboard the vessel. 5.5 inches was chosen because based on the analysis in this document (see Appendix 2), substantial catch of RH/S appears unlikely at mesh sizes of 5.5 inches or greater.

8eLong. Vessels possessing a federal moratorium longfin squid permit would not be able to retain, possess or transfer more than an incidental level of fish (2,500 pounds longfin squid) while in a River Herring Protection Area unless no mesh smaller than 5.5 inches is onboard the vessel.

8eLong would prohibit directed longfin squid fishing in a River Herring Protection Area unless no mesh smaller than 5.5 inches was onboard the vessel. 5.5 inches was chosen because based on the analysis in this document (see Appendix 2), substantial catch of RH/S appears unlikely at mesh sizes of 5.5 inches or greater.

8f. Make the above measures 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong only effective if/when they are effective for Atlantic Herring vessels, including if they become effective in the middle of a season because a catch-cap based trigger is reached by the Atlantic Herring fleet under a trigger established by Amendment 5 to the Atlantic Herring FMP.

These same measures are being considered in Amendment 5 to the Atlantic Herring fishery management plan for the Atlantic herring fishery. Given the overlap in the Atlantic mackerel and Atlantic herring fisheries, and given the hotspots in this Alternative Set are focused on RH catch on herring trips, it primarily makes sense for the hotspot provisions to apply if they also apply to Atlantic herring fishing. 8f, which would make any of the requirements selected in this Alternative Set only applicable when the same measures were in effect for the Atlantic Herring fishery, would thus only be chosen if at least one alternative among 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong was also chosen.
6.0 Description of the Affected Environment

This section identifies and describes the *valued ecosystem components* (VECs) (Beanlands and Duinker 1984) likely to be affected by the actions proposed in this document. The VECs comprise the affected environment within which the proposed actions will take place. The VECs are identified and described here as a means of establishing a baseline for the impact analysis that will be presented in section 7’s "Analysis of Impacts." The significance of the various impacts of the proposed actions on the VECs will also be assessed from a cumulative effects perspective. The range of VECs is described in this section is limited to those for which a reasonable likelihood of meaningful impacts could potentially be expected (CEQ 1997). These VECs are listed below.

1. Managed resources (Atlantic mackerel, longfin squid and *Illex* squid and butterfish)
2. Non-target species (a NEPA-inspired term that includes both discards and incidental catch under MSA)
3. Habitat including EFH for the managed resources and non-target species
4. Endangered and other protected resources
5. Human communities

The physical environment is described next, to establish the context for the VECs, and will be followed by the description of the actual VECs. Appendix D of the 2012 Specifications Environmental Assessment (http://www.mafmc.org/fmp/msb_files/msbSpecs2012.htm) also contains a variety of ecosystem factors considered by the Council.

6.1 Physical Environment

Climate, physiographic, and hydrographic differences separate the Atlantic ocean from Maine to Florida into two distinct areas, the New England-Middle Atlantic Area and the South Atlantic Area, with the natural division occurring at Cape Hatteras, though the division is probably better thought of as a mixing zone rather than as a definitive boundary. The MSB fisheries are prosecuted in the New England-Middle Atlantic Area. The New England-Middle Atlantic area is fairly uniform physically and is influenced by many large coastal rivers and estuarine areas (Freeman and Walford 1974 a-d, 1976 a and b). In the New England-Middle Atlantic area, the continental shelf (characterized by water less than 650 ft in depth) extends seaward approximately 120 miles off Cape Cod, narrows gradually to 70 miles off New Jersey, and is 20 miles wide at Cape Hatteras. Surface circulation is generally southwesterly on the continental shelf during all seasons of the year, although this may be interrupted by coastal indrafting and some reversal of flow at the northern and southern extremities of the area. Water temperatures range from less than 33 °F in the New York Bight in February to over 80 °F off Cape Hatteras in August.

Within the New England-Middle Atlantic Area, the principal area within which the MSB fisheries are prosecuted is the Northeast Shelf Ecosystem which includes the area from the Gulf of Maine south to Cape Hatteras, extending from the coast seaward to the edge of the continental shelf, including the slope sea offshore to the Gulf Stream (Figure 27). A number of distinct subsystems comprise the region. The Gulf of Maine is an enclosed coastal sea, characterized by relatively cold waters and deep basins, with a patchwork of various sediment types. Georges Bank is a relatively shallow coastal plateau that slopes gently from north to south and has steep submarine canyons on its eastern and southeastern edge. It is characterized by highly productive, well-mixed waters and fast-moving currents. The Mid-Atlantic Bight
is comprised of the sandy, relatively flat, gently sloping continental shelf from southern New England to Cape Hatteras, NC.

Figure 27. Geographic scope of the mackerel, squid and butterfish fisheries.

Figures 1 describes the geographic scope of the MSB fisheries. Almost all of the MSB catch and related effort occurs within the solid shaded “core geographic scope.” Previous public comment has requested that the Council include mention that numerous old dump sites for municipal, industrial, and military waste exist in the management area, specifically the "106-Mile Dump Site" formerly utilized east of Delaware's ocean coastline, beyond the Continental Shelf. Detailed information on the 106-Mile Dump Site can be found in the 1995 EPA report to Congress on the 106-Mile Dump Site available by searching for “106 Mile Dump Site at http://www.epa.gov/history/. The available research generally concluded that sewage sludge did not reach important areas for commercial fisheries and that the 106-Mile Dump Site was not the prime source of the generally low chemical contamination in tilefish, the primary commercially important finfish species resident in the shelf/slope areas adjacent to the 106-Mile Dump Site (EPA 1995).
6.2 Biology of the Managed Resources

6.2.1 Atlantic mackerel (mackerel)

Atlantic mackerel is a pelagic, schooling species distributed between Labrador (Newfoundland, Canada) (Parsons 1970) and North Carolina (Anderson 1976a). Sette (1943; 1950) identified two distinct groups consisting of a northern contingent and a southern contingent. The two contingents overwinter primarily along the continental shelf between the Middle Atlantic and Nova Scotia, although it has been suggested that overwintering occurs as far north as Newfoundland. With the advent of warming shelf water in the spring, the two contingents begin migration, with the northern contingent moving along the coast of Newfoundland and historically into the Gulf of St. Lawrence for spawning from the end of May to Mid-August (Berrien 1982). The southern contingent spawns in the Mid-Atlantic and Gulf of Maine from mid-April to June (Berrien 1982) then moves north to the Gulf of Maine and Nova Scotia. In late fall, migration turns south and fish return to the over-wintering grounds. Some of the Council’s advisers who mackerel fish have questioned if the historical patterns described above are being maintained currently. Biochemical studies (Mackay 1967) have not established that genetic differences exist between the two groups and precise estimates of the relative contributions of the two groups cannot be made (ICNAF 1975). Atlantic mackerel in the northwest Atlantic are assessed as a unit stock and are considered one stock for fishery management purposes.

Mackerel are 0.1" long at hatching, grow to about 2" in two months, and reach a length of 8" in December, near the end of their first year of growth (Anderson and Paciorkowski 1978). During their second year of growth they reach about 10" in December, and by the end of their fifth year they grow to an average length of 13" FL. Fish that are 10-13 years old reach a length of 15-16" (Grosslein and Azarovitz 1982). MacKay (1973) and Dery and Anderson (1983) have found an inverse relationship between growth and year class size. All Atlantic mackerel are sexually mature by age 3, while about 50% of the age 2 fish are mature. Average size at maturity is about 10.5-11" FL (Grosslein and Azarovitz 1982). The maximum age observed is 17 years (Pentilla and Anderson 1976).

Atlantic mackerel are opportunistic feeders that can ingest prey either by individual selection of organisms or by passive filter feeding (Pepin et al. 1988). Larvae feed primarily on zooplankton. Juveniles eat mostly small crustaceans such as copepods, amphipods, mysid shrimp and decapod larvae. They also feed on small pelagic molluscs (Spiratella and Clione) when available. Adults feed on the same food as juveniles but diets also include a wider assortment of organisms and larger prey items. For example, euphausiid, pandalid and crangonid shrimp are common prey; chaetognaths, larvaceans, pelagic polychaetes and larvae of many marine species have been identified in mackerel stomachs. Immature mackerel begin feeding in the spring; older fish feed until gonadal development begins, stop feeding until spent and then resume prey consumption (Berrien 1982).

Atlantic mackerel are an important prey species and are known to be preyed upon by many pelagic and demersal fish species, as well as by marine mammals and seabirds (Smith and Gaskin 1974; Payne and Selzer 1983; Overholtz and Waring 1991; Montevvecchi and Myers 1995; Scott and Tibbo 1968; Maurer and Bowman 1975; Stillwell and Kohler 1982, 1985; Bowman and Michaels 1984). The recent TRAC estimated mortality for a subset of key finfish predators (www.mar.dfo-mpo.gc.ca/science/trac/tsr.html) but estimates for marine mammals and seabirds are not available.
Stock Status

The mackerel stock was most recently assessed via a Transboundary Resource Assessment Committee in 2010 (TRAC 2010), which analyzed data through 2008 (www.mar.dfo-mpo.gc.ca/science/trac/tsr.html). A number of different models and model formulations were evaluated. Given the uncertainty in the assessment results, the TRAC agreed that short term projections and characterization of stock status relative to estimated reference points would not be an appropriate basis for management advice at this time. Given current indications of reduced productivity and lack of older fish in the survey and catch, the TRAC recommended that annual total catches not exceed the average total landings (80,000 mt) over the last three years (2006-2008) until such time that new information suggests that a different amount is appropriate. Spawning Stock Biomass outputs from the final TRAC model are included below in Figure 28 but were considered useful only for the purposes of indicating likely trends.

While NMFS’ official “status of stocks” document technically list mackerel as “not overfished” and “not experiencing overfishing” the results of the 2010 TRAC suggest their true status is unknown with respect to being overfished or not and with respect to experiencing overfishing or not, especially since the 2010 TRAC identified technical issues with the preceding assessment. Efforts are ongoing to determine if a switch to “unknown status” would be more appropriate.

![Figure 28. 2010 Mackerel TRAC Spawning Stock Biomass final model output.](image)

NEFSC Spring Survey indices (Geometric Mean) through 2011 (a special request was made for Spring 2011 mackerel data due to concerns about low 2011 catch) for mackerel are included below. Taking the Geometric mean of a given year's values for individual hauls dampens the impact of individual large hauls and was the way the survey data was used in the 2010 TRAC assessment. It is important to note that the 2009-2011 values are adjusted from the raw data of the new Bigelow survey ship based on the calibration study between the Bigelow and its predecessor the Albatross. The calibration factor for this species is one factor for all sizes, and the next assessment may investigate whether size-specific calibration factors are more appropriate. Additional calibration information may be found at: http://www.nefsc.noaa.gov/publications/crd/crd1005/index.html (Miller et al 2010).
Figure 29. Spring NEFSC Survey Mackerel Indices 1968-2011. Geometric Mean, Numbers per Tow

Figure 30. Spring Survey Mackerel Indices 1968-2011. Geometric Mean, kg per Tow
6.2.2 *Illex illecebrosus*

Illex is not a primary concern of this Amendment so only stock status information is provided for reference. Additional details may be found in the specifications environmental assessment which can be downloaded here: http://www.mafmc.org/fnp/msb_files/msbSpecs2012.htm.

Stock Status

The *Illex* stock was most recently assessed at SARC 42 (2006). SARC 42 was publically available in 2006 and included data through 2004. It was not possible to evaluate current stock status because there are no reliable current estimates of stock biomass or fishing mortality rate. The short lifespan of *Illex* greatly complicates assessing the stock with the available survey and assessment resources. In-season assessment and management would be the optimal way to manage any short-lived squid fishery but sufficient resources are not currently available.

NEFSC indices for fall surveys (when *Illex* are available) are included below. It is important to note that the 2009 and 2010 values are adjusted from the raw data of the new Bigelow survey ship based on the calibration study between the Bigelow and its predecessor the Albatross. The calibration factor for this species is one factor for all sizes, and the next assessment may investigate whether size-specific calibration factors are more appropriate.

![Figure 31. Fall NEFSC Trawl Survey - *Illex* Mean #/tow.](http://www.mafmc.org/fnp/msb_files/msbSpecs2012.htm)
Figure 32. Fall NEFSC Trawl Survey - *Illex* Mean kg/tow.
6.2.3 Butterfish

Butterfish is not a primary concern of this Amendment so only stock status information is provided for reference. Additional details may be found in the specifications environmental assessment which can be downloaded here: http://www.mafmc.org/fmp/msb_files/msbSpecs2012.htm.

Stock Status

The butterfish stock was most recently assessed at SARC 49 (2010) using data through 2008. The SARC review panel did not accept the adequacy of the redefined Biological reference points or the Biological reference points used for stock status determination in the 2004 butterfish assessment. The review panel questioned the application of MSY theory to a short-lived recruitment-dominated population, particularly the use of equilibrium methods when trends in the data suggest the stock is declining even with low fishing mortality. It was agreed that overfishing was not likely occurring. The review panel concluded that the decline in the butterfish stock appears to be driven by environmental processes and low recruitment. Determination of an overfished versus not overfished condition was not resolved at the meeting, which left the overfished status of butterfish unknown. Final model outputs for biomass, recruitment, and fishing mortality were only accepted in terms of reflecting the appropriate trend (downward).

While NMFS’ official “status of stocks” document technically lists butterfish as “overfished” and “not experiencing overfishing” the results of the 2010 assessment suggest their true status is unknown with respect to being overfished or not and unknown with respect to experiencing overfishing or not because of butterfish’s short lifespan and because of the concerns raised by the review panel regarding the 2004 assessment’s conclusions. Efforts are ongoing to determine if a switch to “unknown status” would be more appropriate.
6.2.4 Longfin Squid

Longfin squid are distributed primarily in continental shelf waters located between Newfoundland and the Gulf of Venezuela (Cohen 1976; Dawe et al. 1990). In the northwest Atlantic Ocean, longfin squid are most abundant in the waters between Georges Bank and Cape Hatteras, NC where the species is commercially exploited. The stock area extends from the Gulf of Maine to southern Florida. However, the southern limit of the species’ distribution in U.S. waters is unknown due to an overlap in geographic distribution with the congener, *Loligo pleii*, which cannot be visually distinguished from longfin squid using gross morphology (Cohen 1976). A recent genetics study indicates that the population inhabiting the waters between Cape Cod Bay, MA and Cape Hatteras, NC is likely a single stock (Shaw et al. 2010). Distribution varies seasonally. North of Cape Hatteras, squid migrate offshore during late autumn to overwinter in warmer waters along the shelf edge and slope, and then return inshore during the spring where they remain until late autumn (Jacobson 2005).

Natural mortality rates are very high, especially after spawning. The species is migrates long distances during its short lifespan; inshore during spring and offshore during late fall. Recruitment occurs throughout the year with seasonal peaks in overlapping “micro-cohorts” which have rapid and different growth rates (Brodziak and Macy 1996; Macy and Brodziak 2001). As a result, seasonally stable biomass estimates may mask substantial population turnover (Guerra et al. 2010). Recruitment of longfin squid is largely driven by environmental factors (Dawe et al. 2007). For most squid species, temperature plays a large role in migrations and distribution, growth, and spawning (Boyle and Rodhouse 2005). For longfin squid, individuals hatched in warmer waters during the summer grow more rapidly than those hatched in winter and males grow faster and attain larger sizes than females (Brodziak and Macy 1996).

Statolith ageing studies of longfin squid have indicated a life span of less than one year (Macy 1992, Brodziak and Macy 1996). Consequently, all recent stock assessments for longfin squid have been conducted under the assumption that the species has a semelparous (i.e., annual) life-cycle and has the capacity to spawn throughout the year (NMFS 1994), as now appears typical of pelagic squid species studied throughout the world (Jereb et al. 1991).

Longfin squid eggs are usually attached to a preexisting cluster of newly spawned eggs (clusters are initiated on rocks, sand, and seaweeds). The female lays between 20 and 30 of these capsules, each containing 150 to 200 large (about 0.05”), oval eggs, for a total of 3,000 to 6,000 eggs. These clusters of demersal eggs, with as many as 175 capsules per cluster, are found in shallow waters (10-100’) and may often be found washed ashore on beaches (Jacobson 2005, Grosslein and Azarovitz 1982).

The diet of longfin squid changes with increasing size; small immature individuals feed on small invertebrates and planktonic organisms (Vovk 1972a, Tibbetts 1977) while larger individuals feed on crustaceans and small fish (Vinogradov and Noskov 1979). Cannibalism is observed in individuals larger than 2 in (5 cm) (Whitacker 1978). Maurer and Bowman (1985) demonstrated seasonal and inshore/offshore differences in diet: in the spring in offshore waters, the diet was composed of crustaceans (mainly euphausiids) and fish; in the fall in inshore waters, the diet was composed almost exclusively of fish; and in the fall in offshore waters, the diet was composed of fish and squid.

Stock Status

Based on a new proposed biomass reference point from the 2010 assessment (NEFSC 2011), the longfin inshore squid stock was not overfished in 2009, but overfishing status was not determined because no overfishing threshold was recommended. The 2010 longfin squid assessment (NEFSC 2010) essentially found that the longfin squid stock appears to have successfully supported the range of observed catches (9,600 mt - 26,100 mt) during 1976-2009, as well as relatively high levels of finfish predation during 1977-1984 and 1999-2009. Finfish predation appeared relatively low 1978-1998. Catch divided by biomass was used to evaluate exploitation and the highest exploitation index occurred related to a catch of 23,400mt which was the basis for this year’s ABC. This was an important finding for management purposes given all of the squid in a squid assessment are dead before the assessment is completed, nevermind when management might actually seek to use the results. In-season assessment and management would be the optimal way to manage any short-lived squid fishery but sufficient resources are not currently available.

A new target Biomass Associated with MSY of 50% of K (0.50*(76,329/0.90) = 42,405 mt) was recommended. The biomass threshold is 50% of the Biomass Associated with MSY (= 21,203 mt). The biomass estimate, which is based on the two-year average of catchability-adjusted spring and fall survey biomass during 2008-2009, was 54,442 mt (80% Confidence Interval = 38,452-71,783 mt). This is greater than the Biomass Threshold and the target Biomass Associated with MSY. The stock exhibits very large fluctuations in abundance from variation in reproductive success and recruitment, expressed as large interannual changes (2-3 fold) in survey biomass.

A new threshold reference point for fishing mortality was not recommended in the 2010 assessment because there was no clear statistical relationship between longfin squid catch and annual biomass estimates during 1975-2009. Furthermore, annual catches were low relative to annual estimates of minimum consumption by a subset of fish predators. The 2009 exploitation index of 0.176 (catch divided by the average 2008-2009 spring and fall survey biomasses) was slightly below the 1987-2008 median of 0.237 (80% Confidence Interval = 0.124-0.232). Relevant NEFSC trawl indices are provided in figure 38 though figure 43. 2009 and 2010 values have been calibrated “back” to Albatross units to facilitate comparison with a length-specific calibration factor developed in the recent assessment.
Figure 33. 2010 Assessment Figure B6 - Annual Biomass in Relation to the Proposed Biomass Threshold (which is ½ of the target) - Shown Here as a Relative Value

Figure 34. Fall NEFSC Trawl Survey – Longfin Squid Mean kg/tow All Sizes.
Figure 35. Fall NEFSC Trawl Survey – Longfin Squid Mean #/tow Pre-recruits.

Figure 36. Fall NEFSC Trawl Survey – Longfin Squid Mean #/tow Recruits.
Figure 37. Spring NEFSC Trawl Survey – Longfin Squid Mean kg/tow All Sizes.
Figure 38. Spring NEFSC Trawl Survey – Longfin Squid Mean #/tow Pre-recruits.

Figure 39. Spring NEFSC Trawl Survey – Longfin Squid mean #/tow Recruits.
6.2.5 Atlantic Herring

Given the mixed nature of the MSB fleets and their co-catch of Atlantic Herring as described elsewhere in this document (see Appendix 2), a brief summary of the status of the Atlantic Herring resource and fishery is provided below. This summary is adapted from the Atlantic Herring Fishery Management Plan’s Amendment 5 DEIS, which is available in its entirety at: http://www.nefmc.org/herring/index.html.

The NEFMC manages herring under the Atlantic Herring FMP. Currently, the Atlantic Herring resource is managed as a single coastal stock complex, although three spawning stock components occupy three fairly distinct locations in the Gulf of Maine region in the Gulf of Maine region: the southwest Nova Scotia-Bay of Fundy, the coastal waters of the Gulf of Maine, and Georges Bank. In general, Gulf of Maine herring migrate from summer feeding grounds along the Maine coast and on Georges Bank to southern New England and Mid-Atlantic areas during winter, with larger individuals tending to migrate farther distances. Tagging experiments provide evidence of intermixing of Gulf of Maine, Georges Bank, and Scotian Shelf herring during different phases of the annual migration.

During at least some part of the year, Atlantic herring are widely distributed in continental shelf waters of the Northeast Atlantic, from Labrador to Cape Hatteras. Herring can be found in every major estuary from the northern Gulf of Maine to the Chesapeake Bay. They are most abundant north of Cape Cod and become increasingly scarce south of New Jersey (Kelly and Moring 1986) with the largest and oldest fish found in the southern most portion of the range (Munro 2002). Adult Atlantic herring are found in shallow inshore waters, 20 meters deep, to offshore waters up to 200 meters deep (NEFMC 1999; Munro 2002), but seldom migrate to depths more than 50 fathoms (300 ft or 91.4 meters) (Kelly and Moring 1986). They prefer water temperatures of 5 – 9 degrees C (Munro 2002; Zinkevich 1967), but may overwinter at temperatures as low as 0° C (Reid et al. 1999).

Stock Status

Currently, the stock complex is not overfished and overfishing is not occurring. MSY reference points for the herring complex were re-estimated during the most recent assessment (TRAC 2009). Results from a Fox surplus production model were a dishing mortality associated with MSY = 0.27 and the Biomass Associated with MSY = 670,600 mt. The Gulf of Maine-Georges Bank herring complex began to recover during the late 1980s and current total biomass (age 2+) is now comparable to the mid-1970s, just before the collapse. Biomass increased from a low of about 112,000 mt in 1982 to about 854,000 mt in 2000, and declined slightly to about 652,000 mt in 2008, which was just below the Biomass Associated with MSY (670,600 mt). Fishing mortality has remained relatively low since the early 1990s and averaged 0.17 during 1998-2008, which is below the fishing mortality associated with MSY (0.27).
6.3 Non-Target Species (Fish)

6.3.1 Past Analyses

Discarding has been addressed generally in a number of previous actions, most recently Amendment 10 to the MSB FMP. Discarding across the MSB fisheries is described in the annual specifications from a “directed trip” point of view. The trip definitions used are described below (there is no identifiable directed butterfish fishery):

Mackerel: Directed mackerel trips are defined as all trips that had at least 50% mackerel by weight and all trips over 100,000 pounds of mackerel regardless of the ratio of other species. This definition results in capturing 97.4% of all mackerel landings in the dealer weighout database 2006-2010. The other trips with lower mackerel landings landed a variety of species, mostly Atlantic herring, silver hake, longfin squid, and scup. The set of trips in the observer database with the same mackerel criteria included 12 on average for each year 2006-2010 (61 total with 73 at least partially unobserved hauls and 204 observed hauls). The observed mackerel caught on these trips accounted for approximately 6.5% of the total mackerel caught.

Illex: Directed Illex trips are defined as all trips that had at least 50% Illex by weight. This definition results in capturing 99.6% of all Illex landings in the dealer weighout database 2006-2010 and was applied to the observer database to examine discards in the Illex fishery. The resulting set of trips in the observer database included 18 on average for each year 2006-2010 (91 total – 2010 had a relatively high number of observed trips). These 91 trips made 962 hauls of which 94% were fully observed. Hauls may be unobserved for a variety of reasons, for example transfer to another vessel without an observer, observer not on station, haul slipped (dumped) in the water, etc. Readers will note the high FISH, NK numbers in the associated table. This was caused by one haul in 2009 that was too big to bring aboard a vessel and some had to be dumped (installed net sensors failed). While it had to be recorded as FISH, NK, the observer's log suggests that it was mostly squid ("Unknown as to how much was released, but observer saw a swordfish come out along with the squid."). Also, of the 75,042 pounds that did come aboard from this haul, the observer recorded only 42 pounds of Illex discarded and no other species observed. The observed Illex caught on these trips accounted for approximately 11.0 % of the total Illex caught.

Longfin Squid: All trips that had at least 50% longfin squid by weight and all trips that had at least 10,000 pounds of longfin squid regardless of the ratio to other species. This definition results in capturing almost 91% of all longfin squid landings in the dealer weighout database. This definition was applied to the observer database to examine discards in the longfin squid fishery. The resulting set of trips in the observer database included 83 on average for each year 2006-2010 (413 total – 2009 and 2010 had relatively high numbers of observed trips). These 413 trips made 4186 hauls of which 91% were fully observed. Hauls may be unobserved for a variety of reasons, for example transfer to another vessel without an observer, observer not on station, haul slipped (dumped) in the water, etc. The observed longfin squid caught on these trips accounted for approximately 3.5% of the total longfin squid caught.
Using the ratios of caught other species to retained directed species, and average landings of the target species, one can make a rough calculation of the annual catch of the relevant non-target species, described in the tables below.

This document includes a technically superior catch estimation methodology for RH/S described below. However, since the tables generated for the specifications list the major other species caught, they are provided below for reference. Also, the lack of substantial RH/S catch in the Illex fishery is a primary reason why this Amendment focused on the mackerel and longfin squid fisheries. This finding was reinforced by the new analysis, as described below.

Table 17. Key Species Observed Taken and Discarded in Directed Trips for Mackerel, Based on Unpublished NMFS Northeast Fisheries Observer Program Data and Unpublished Dealer Weighout Data from 2006-2010. (see text for criteria). There Are 2204.6 Pounds in One Metric Ton.

<table>
<thead>
<tr>
<th>NE Fisheries Science Center Common Name</th>
<th>Pounds Observed Caught</th>
<th>Pounds Observed Discarded</th>
<th>For every metric ton of mackerel caught, pounds of given species caught.</th>
<th>For every metric ton of mackerel caught, pounds of given species discarded.</th>
<th>D.K Ratio (Ratio of species discarded to Mackerel Kept)</th>
<th>Percent of given species that was discarded</th>
<th>Percent of all discards observed, percent that comes from given species</th>
<th>Rough Annual Catch (pounds) based on 5-year (2006-2010) average of mackerel catch (29,200 mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOGFISH SPINY</td>
<td>153,250</td>
<td>143,036</td>
<td>16.1</td>
<td>15.0</td>
<td>0.0068</td>
<td>47%</td>
<td>93%</td>
<td>468,934</td>
</tr>
<tr>
<td>HERRING, ATLANTIC</td>
<td>7,300,067</td>
<td>71,601</td>
<td>765.0</td>
<td>7.5</td>
<td>0.0034</td>
<td>23%</td>
<td>1%</td>
<td>22,337,625</td>
</tr>
<tr>
<td>SCUP</td>
<td>41,899</td>
<td>41,848</td>
<td>4.4</td>
<td>4.4</td>
<td>0.0020</td>
<td>14%</td>
<td>100%</td>
<td>128,206</td>
</tr>
<tr>
<td>FISH, NK</td>
<td>18,800</td>
<td>18,800</td>
<td>2.0</td>
<td>2.0</td>
<td>0.0009</td>
<td>6%</td>
<td>100%</td>
<td>57,527</td>
</tr>
<tr>
<td>MACKEREL, ATLANTIC</td>
<td>21,037,906</td>
<td>18,575</td>
<td>2,204.6</td>
<td>1.9</td>
<td>0.0009</td>
<td>6%</td>
<td>0%</td>
<td>NA</td>
</tr>
<tr>
<td>HERRING (NK)</td>
<td>2,859</td>
<td>2,859</td>
<td>0.3</td>
<td>0.3</td>
<td>0.0001</td>
<td>1%</td>
<td>100%</td>
<td>8,748</td>
</tr>
<tr>
<td>BUTTERFISH</td>
<td>13,151</td>
<td>2,821</td>
<td>1.4</td>
<td>0.3</td>
<td>0.0001</td>
<td>1%</td>
<td>21%</td>
<td>40,240</td>
</tr>
<tr>
<td>BASS, STRIPED</td>
<td>1,605</td>
<td>1,605</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0001</td>
<td>1%</td>
<td>100%</td>
<td>4,911</td>
</tr>
<tr>
<td>SQUID (ILLEX)</td>
<td>2,709</td>
<td>1,148</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0001</td>
<td>0%</td>
<td>42%</td>
<td>8,290</td>
</tr>
<tr>
<td>HAKE, SILVER</td>
<td>16,433</td>
<td>1,032</td>
<td>1.7</td>
<td>0.1</td>
<td>0.0000</td>
<td>0%</td>
<td>6%</td>
<td>50,284</td>
</tr>
<tr>
<td>SHAD, AMERICAN</td>
<td>3,502</td>
<td>702</td>
<td>0.4</td>
<td>0.1</td>
<td>0.0000</td>
<td>0%</td>
<td>20%</td>
<td>10,717</td>
</tr>
<tr>
<td>HERRING, BLUE BACK</td>
<td>97,416</td>
<td>644</td>
<td>10.2</td>
<td>0.1</td>
<td>0.0000</td>
<td>0%</td>
<td>1%</td>
<td>298,084</td>
</tr>
<tr>
<td>DOGFISH (NK)</td>
<td>500</td>
<td>500</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0000</td>
<td>0%</td>
<td>100%</td>
<td>1,530</td>
</tr>
<tr>
<td>SEA BASS, BLACK</td>
<td>638</td>
<td>469</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0000</td>
<td>0%</td>
<td>74%</td>
<td>1,952</td>
</tr>
<tr>
<td>SEA ROBIN, NORTHERN</td>
<td>330</td>
<td>312</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0000</td>
<td>0%</td>
<td>95%</td>
<td>1,010</td>
</tr>
<tr>
<td>ALEWIFE</td>
<td>22,152</td>
<td>305</td>
<td>2.3</td>
<td>0.0</td>
<td>0.0000</td>
<td>0%</td>
<td>1%</td>
<td>67,783</td>
</tr>
</tbody>
</table>
Table 18. Key Species Observed Taken and Discarded in Directed Trips for *Illex*, Based on Unpublished NMFS Northeast Fisheries Observer Program Data and Unpublished Dealer Weighout Data from 2006-2010. (see text for criteria). There Are 2204.6 Pounds in One Metric Ton.

<table>
<thead>
<tr>
<th>NE Fisheries Science Center Common Name</th>
<th>Pounds Observed Caught</th>
<th>Pounds Observed Discarded</th>
<th>For every metric ton of Illex caught, pounds of given species caught.</th>
<th>For every metric ton of Illex caught, pounds of given species discarded.</th>
<th>D-K Ratio (Ratio of species discarded to Illex Kept)</th>
<th>Of all discards observed, percent that comes from given species</th>
<th>Percent of given species that was discarded</th>
<th>Rough Annual Catch (pounds) based on 5-year average of Illex landings (15,314 mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQUID (ILLEX)</td>
<td>18,560,449</td>
<td>263,257</td>
<td>2,204.6</td>
<td>31</td>
<td>0.0144</td>
<td>64.1%</td>
<td>1%</td>
<td>NA</td>
</tr>
<tr>
<td>BUTTERFISH</td>
<td>51,629</td>
<td>37,497</td>
<td>6.1</td>
<td>4</td>
<td>0.0020</td>
<td>9.1%</td>
<td>73%</td>
<td>93.913</td>
</tr>
<tr>
<td>FISH, NK</td>
<td>25,994</td>
<td>25,994</td>
<td>3.1</td>
<td>3</td>
<td>0.0014</td>
<td>6.3%</td>
<td>100%</td>
<td>47.282</td>
</tr>
<tr>
<td>HAKE, SPOTTED</td>
<td>14,161</td>
<td>14,010</td>
<td>1.7</td>
<td>2</td>
<td>0.0008</td>
<td>3.4%</td>
<td>99%</td>
<td>25,759</td>
</tr>
<tr>
<td>DORY, BUCKLER (JOHN)</td>
<td>15,346</td>
<td>10,986</td>
<td>1.8</td>
<td>1</td>
<td>0.0006</td>
<td>2.7%</td>
<td>72%</td>
<td>27,915</td>
</tr>
<tr>
<td>HERRING (NK)</td>
<td>10,852</td>
<td>10,852</td>
<td>1.3</td>
<td>1</td>
<td>0.0006</td>
<td>2.6%</td>
<td>100%</td>
<td>19,739</td>
</tr>
<tr>
<td>DOGFISH SPINY</td>
<td>9,343</td>
<td>9,341</td>
<td>1.1</td>
<td>1</td>
<td>0.0005</td>
<td>2.3%</td>
<td>100%</td>
<td>16,994</td>
</tr>
<tr>
<td>MACKEREL, CHUB</td>
<td>10,226</td>
<td>8,243</td>
<td>1.2</td>
<td>1</td>
<td>0.0005</td>
<td>2.0%</td>
<td>81%</td>
<td>18,602</td>
</tr>
<tr>
<td>SQUID (LOUGO)</td>
<td>75,449</td>
<td>6,648</td>
<td>9.0</td>
<td>1</td>
<td>0.0004</td>
<td>1.6%</td>
<td>9%</td>
<td>137,241</td>
</tr>
<tr>
<td>HAKE, SILVER</td>
<td>3,875</td>
<td>3,848</td>
<td>0.5</td>
<td>0</td>
<td>0.0002</td>
<td>0.9%</td>
<td>99%</td>
<td>7,049</td>
</tr>
<tr>
<td>SQUID, NK</td>
<td>3,612</td>
<td>3,612</td>
<td>0.4</td>
<td>0</td>
<td>0.0002</td>
<td>0.9%</td>
<td>100%</td>
<td>6,570</td>
</tr>
<tr>
<td>BEARDFISH</td>
<td>3,257</td>
<td>3,242</td>
<td>0.4</td>
<td>0</td>
<td>0.0002</td>
<td>0.8%</td>
<td>100%</td>
<td>5,924</td>
</tr>
<tr>
<td>HAKE, RED</td>
<td>2,825</td>
<td>2,825</td>
<td>0.3</td>
<td>0</td>
<td>0.0002</td>
<td>0.7%</td>
<td>100%</td>
<td>5,139</td>
</tr>
<tr>
<td>DOGFISH SMOOTH</td>
<td>1,257</td>
<td>1,257</td>
<td>0.1</td>
<td>0</td>
<td>0.0001</td>
<td>0.3%</td>
<td>100%</td>
<td>2,287</td>
</tr>
<tr>
<td>FLOUNDER, FOURSPOOT</td>
<td>1,150</td>
<td>1,150</td>
<td>0.1</td>
<td>0</td>
<td>0.0001</td>
<td>0.3%</td>
<td>100%</td>
<td>2,092</td>
</tr>
<tr>
<td>WHITING, BLACK</td>
<td>1,036</td>
<td>1,036</td>
<td>0.1</td>
<td>0</td>
<td>0.0001</td>
<td>0.3%</td>
<td>100%</td>
<td>1,884</td>
</tr>
<tr>
<td>ANGLER</td>
<td>1,131</td>
<td>820</td>
<td>0.1</td>
<td>0</td>
<td>0.0000</td>
<td>0.2%</td>
<td>72%</td>
<td>2,057</td>
</tr>
<tr>
<td>SHAD, AMERICAN</td>
<td>779</td>
<td>636</td>
<td>0.1</td>
<td>0</td>
<td>0.0000</td>
<td>0.2%</td>
<td>82%</td>
<td>1,417</td>
</tr>
<tr>
<td>HADDOCK</td>
<td>582</td>
<td>582</td>
<td>0.1</td>
<td>0</td>
<td>0.0000</td>
<td>0.1%</td>
<td>100%</td>
<td>1,058</td>
</tr>
<tr>
<td>ROSEFISH,BLACK BELLY</td>
<td>504</td>
<td>490</td>
<td>0.1</td>
<td>0</td>
<td>0.0000</td>
<td>0.1%</td>
<td>97%</td>
<td>917</td>
</tr>
<tr>
<td>REDFISH</td>
<td>454</td>
<td>454</td>
<td>0.1</td>
<td>0</td>
<td>0.0000</td>
<td>0.1%</td>
<td>100%</td>
<td>826</td>
</tr>
</tbody>
</table>

THIS SPACE INTENTIONALLY LEFT BLANK
Table 19. Key Species Observed Taken and Discarded in Directed Trips for Longfin Squid, Based on Unpublished NMFS Northeast Fisheries Observer Program Data and Unpublished Dealer Weighout Data from 2006-2010. (see text for criteria). There Are 2204.6 Pounds in One Metric Ton.

<table>
<thead>
<tr>
<th>NE Fisheries Science Center Common Name</th>
<th>Pounds Observed Caught</th>
<th>Pounds Observed Discarded</th>
<th>For every metric ton of Loligo caught, pounds of given species caught.</th>
<th>For every metric ton of Loligo caught, pounds of given species discarded.</th>
<th>D : K Ratio (Ratio of species discarded to Loligo Kept)</th>
<th>Of all discards observed, percent that comes from given species</th>
<th>Percent of given species that was discarded</th>
<th>Rough Annual Catch (pounds) based on 5-year average of Loligo catch (11634 mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTTERFISH</td>
<td>524,478</td>
<td>490,523</td>
<td>260.3</td>
<td>243.4</td>
<td>0.11</td>
<td>0.17</td>
<td>0.94</td>
<td>3,027,814</td>
</tr>
<tr>
<td>DOGFISH SPINY</td>
<td>327,240</td>
<td>326,342</td>
<td>162.4</td>
<td>161.9</td>
<td>0.07</td>
<td>0.11</td>
<td>1.00</td>
<td>1,889,160</td>
</tr>
<tr>
<td>SQUID (ILLEX)</td>
<td>651,634</td>
<td>254,007</td>
<td>323.4</td>
<td>126.0</td>
<td>0.06</td>
<td>0.09</td>
<td>0.39</td>
<td>3,761,885</td>
</tr>
<tr>
<td>HAKE, SILVER</td>
<td>310,387</td>
<td>240,680</td>
<td>154.0</td>
<td>119.4</td>
<td>0.06</td>
<td>0.08</td>
<td>0.78</td>
<td>1,791,865</td>
</tr>
<tr>
<td>HAKE, SPOTTED</td>
<td>227,516</td>
<td>221,705</td>
<td>112.9</td>
<td>110.0</td>
<td>0.05</td>
<td>0.08</td>
<td>0.97</td>
<td>1,313,452</td>
</tr>
<tr>
<td>SCUP</td>
<td>225,359</td>
<td>147,507</td>
<td>111.8</td>
<td>73.2</td>
<td>0.03</td>
<td>0.05</td>
<td>0.65</td>
<td>1,301,001</td>
</tr>
<tr>
<td>HAKE, RED</td>
<td>151,091</td>
<td>141,791</td>
<td>75.0</td>
<td>70.4</td>
<td>0.03</td>
<td>0.05</td>
<td>0.94</td>
<td>872,248</td>
</tr>
<tr>
<td>SKATE, LITTLE</td>
<td>129,078</td>
<td>128,741</td>
<td>64.1</td>
<td>63.9</td>
<td>0.03</td>
<td>0.04</td>
<td>1.00</td>
<td>745,167</td>
</tr>
<tr>
<td>FLOUNDER, FOURSPOT</td>
<td>90,270</td>
<td>90,101</td>
<td>44.8</td>
<td>44.7</td>
<td>0.02</td>
<td>0.02</td>
<td>0.99</td>
<td>521,128</td>
</tr>
<tr>
<td>SQUID (LOLIGO)</td>
<td>4,442,800</td>
<td>2204.6</td>
<td>149.4</td>
<td>148.5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.99</td>
<td>1,737,723</td>
</tr>
<tr>
<td>MACKEREL, ATLANTIC</td>
<td>301,008</td>
<td>75,368</td>
<td>18.7</td>
<td>18.7</td>
<td>0.01</td>
<td>0.01</td>
<td>1.00</td>
<td>217,594</td>
</tr>
<tr>
<td>FLOUNDER, SUMMER</td>
<td>99,681</td>
<td>50,938</td>
<td>49.5</td>
<td>25.3</td>
<td>0.01</td>
<td>0.02</td>
<td>0.91</td>
<td>575,461</td>
</tr>
<tr>
<td>SCALLOP, SEA</td>
<td>55,802</td>
<td>47,427</td>
<td>27.7</td>
<td>23.5</td>
<td>0.01</td>
<td>0.02</td>
<td>0.85</td>
<td>322,145</td>
</tr>
<tr>
<td>DOGFISH SMOOTH</td>
<td>48,695</td>
<td>44,503</td>
<td>24.2</td>
<td>22.1</td>
<td>0.01</td>
<td>0.02</td>
<td>0.91</td>
<td>281,118</td>
</tr>
<tr>
<td>SEA WEEDS</td>
<td>37,692</td>
<td>37,692</td>
<td>18.7</td>
<td>18.7</td>
<td>0.01</td>
<td>0.01</td>
<td>1.00</td>
<td>217,594</td>
</tr>
<tr>
<td>CRAB, LADY</td>
<td>36,931</td>
<td>36,931</td>
<td>18.3</td>
<td>18.3</td>
<td>0.01</td>
<td>0.01</td>
<td>1.00</td>
<td>213,200</td>
</tr>
<tr>
<td>BASS, STRIPED</td>
<td>32,826</td>
<td>31,097</td>
<td>16.3</td>
<td>15.4</td>
<td>0.01</td>
<td>0.01</td>
<td>0.95</td>
<td>189,504</td>
</tr>
<tr>
<td>HERRING, ATLANTIC</td>
<td>30,188</td>
<td>30,188</td>
<td>15.0</td>
<td>15.0</td>
<td>0.01</td>
<td>0.01</td>
<td>1.00</td>
<td>174,274</td>
</tr>
<tr>
<td>SKATE, BIG</td>
<td>27,459</td>
<td>27,057</td>
<td>13.6</td>
<td>13.4</td>
<td>0.01</td>
<td>0.01</td>
<td>0.99</td>
<td>158,519</td>
</tr>
<tr>
<td>SKATE, NK</td>
<td>25,968</td>
<td>25,873</td>
<td>12.9</td>
<td>12.8</td>
<td>0.01</td>
<td>0.01</td>
<td>1.00</td>
<td>149,915</td>
</tr>
<tr>
<td>FLOUNDER, WINTER</td>
<td>23,383</td>
<td>23,059</td>
<td>11.6</td>
<td>11.4</td>
<td>0.01</td>
<td>0.01</td>
<td>0.99</td>
<td>134,993</td>
</tr>
<tr>
<td>HERRING (NK)</td>
<td>20,892</td>
<td>20,882</td>
<td>10.4</td>
<td>10.4</td>
<td>0.00</td>
<td>0.01</td>
<td>1.00</td>
<td>120,610</td>
</tr>
<tr>
<td>ANGLER</td>
<td>44,126</td>
<td>18,540</td>
<td>21.9</td>
<td>9.2</td>
<td>0.00</td>
<td>0.01</td>
<td>0.42</td>
<td>254,740</td>
</tr>
<tr>
<td>BLUEFISH</td>
<td>43,050</td>
<td>18,402</td>
<td>21.4</td>
<td>9.1</td>
<td>0.00</td>
<td>0.01</td>
<td>0.43</td>
<td>248,530</td>
</tr>
<tr>
<td>DORY, BUCKLER (JOHN)</td>
<td>33,895</td>
<td>14,465</td>
<td>16.8</td>
<td>7.2</td>
<td>0.00</td>
<td>0.01</td>
<td>0.43</td>
<td>195,678</td>
</tr>
<tr>
<td>SKATE, BARDOOR</td>
<td>12,720</td>
<td>12,660</td>
<td>6.3</td>
<td>6.3</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>73,434</td>
</tr>
<tr>
<td>SEA BASS, BLACK</td>
<td>18,185</td>
<td>12,433</td>
<td>9.0</td>
<td>6.2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.68</td>
<td>104,984</td>
</tr>
<tr>
<td>HAKE, WHITE</td>
<td>13,360</td>
<td>12,255</td>
<td>6.6</td>
<td>6.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.92</td>
<td>77,125</td>
</tr>
<tr>
<td>LOBSTER</td>
<td>15,560</td>
<td>12,093</td>
<td>7.7</td>
<td>6.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.78</td>
<td>89,830</td>
</tr>
<tr>
<td>FISH, NK</td>
<td>6,076</td>
<td>6,033</td>
<td>3.0</td>
<td>3.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.99</td>
<td>35,078</td>
</tr>
<tr>
<td>TAUTOG</td>
<td>6,047</td>
<td>5,617</td>
<td>3.0</td>
<td>2.8</td>
<td>0.00</td>
<td>0.00</td>
<td>0.93</td>
<td>34,910</td>
</tr>
<tr>
<td>SHAD, AMERICAN</td>
<td>5,051</td>
<td>5,431</td>
<td>2.7</td>
<td>2.7</td>
<td>0.00</td>
<td>0.00</td>
<td>0.99</td>
<td>31,758</td>
</tr>
<tr>
<td>HADDOCK</td>
<td>3,897</td>
<td>3,883</td>
<td>1.9</td>
<td>1.9</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>22,495</td>
</tr>
<tr>
<td>HERRING, BLUE BACK</td>
<td>2,911</td>
<td>2,911</td>
<td>1.4</td>
<td>1.4</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>16,806</td>
</tr>
<tr>
<td>FLOUNDER, YELLOWTAIL</td>
<td>2,244</td>
<td>1,506</td>
<td>1.1</td>
<td>0.7</td>
<td>0.00</td>
<td>0.00</td>
<td>0.67</td>
<td>12,952</td>
</tr>
<tr>
<td>ALEWIFE</td>
<td>2,356</td>
<td>1,276</td>
<td>1.2</td>
<td>0.6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.54</td>
<td>13,600</td>
</tr>
<tr>
<td>SHAD, HICKORY</td>
<td>1,007</td>
<td>915</td>
<td>0.5</td>
<td>0.5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.91</td>
<td>5,811</td>
</tr>
</tbody>
</table>
6.3.2 River Herrings (blueback herring and alewife)

Life history and stock status are summarized below. Additional details may be found in the ASMFC’s 2009 Amendment 2 to the Interstate Fishery Management Plan (IFMP) for Shad and River Herring (River Herring Management) available at http://www.asmfc.org/shadRiverHerring.htm (the text below is adapted from that document).

Alewife and blueback herring (collectively known as river herring) are anadromous fishes, spending most of their lives in ocean waters, migrating to their natal freshwater areas in the spring months to spawn. Alewife are most abundant in the Mid-Atlantic and northeastern states. Blueback herring are found from Nova Scotia to northern Florida and are most abundant in waters from the Chesapeake Bay south (Scott and Scott 1988). Alewife generally spawn earlier than blueback herring in areas where both species occur. Alewife spawn in rivers, creeks, lakes and ponds, over rocks, detritus, submerged aquatic vegetation and sand. Blueback herring generally prefer to spawn over sand or gravel in swift-flowing areas of rivers and tributaries. In more southerly areas where both species exist, blueback herring utilize flooded back swamps, oxbows and stream edges for spawning. For both species, adults return to the ocean after spawning. Juveniles use the rivers and estuaries as nursery areas and migrate to the ocean as water temperatures decline in the fall. River herring reach sexual maturity at 3-6 years of age. Post-spawning mortality is highest in the states south of North Carolina as most populations are considered to be semelparous (i.e., spawn once and die). Little information is available on the life history of river herring once the juveniles emigrate to the ocean and until they return as mature adults to the freshwater areas to spawn, though Appendix 1 describes the distribution of river herring catch in the Northeast Fisheries Science Center (NEFSC) bottom trawl survey data, which takes place in ocean waters. Migration patterns are charted in tables 17 and 18.

Stock Status

In the most recent ASMFC river herring stock assessment, of the 24 river herring stocks for which sufficient data is available to make a conclusion, 23 were depleted relative to historic levels and one was increasing. The status of 28 additional stocks could not be determined because the time-series of available data was too short. Estimates of abundance and fishing mortality could not be developed because of the lack of adequate data. The “depleted” determination was used instead of “overfished” and “overfishing” because of the many factors that have contributed to the declining abundance of river herring, which include not just directed and non-target fishing, but likely also habitat issues (including dam passage), predation, and climate change. It is hard to decipher which factors may be driving river herring abundance trends but the assessment concluded that management actions to reduce total mortality are needed. There are no coast-wide reference points. However, recent Northeast Fisheries Science Center (NEFSC) bottom trawl survey data do suggest possible recent improvement from a coast-wide perspective for both species (see Appendix 1). Both blueback herring and alewife are currently candidate species for ESA listing, with a decision due by NMFS on August 5, 2012 (see Section 6.5.6).
Table 20. Blueback Herring Migration Patterns (SA = Some activity; PA = Peak Activity)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SA SA PA PA PA PA</td>
<td>SA SA PA PA PA PA</td>
<td>SA SA PA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>SA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>SA SA PA PA SA</td>
<td>SA SA PA PA PA SA</td>
<td>SA SA PA PA PA</td>
<td>SA SA PA PA PA</td>
<td>SA SA PA PA PA</td>
<td>SA SA PA PA PA PA</td>
<td>SA SA PA PA PA PA</td>
<td>SA SA PA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SA PA PA PA PA PA</td>
<td>SA PA PA PA PA PA</td>
<td>SA PA PA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>SA SA PA PA SA</td>
<td>SA SA PA PA PA SA</td>
<td>SA SA PA PA PA</td>
<td>SA SA PA PA PA</td>
<td>SA SA PA PA PA</td>
<td>SA SA PA PA PA PA</td>
<td>SA SA PA PA PA PA</td>
<td>SA SA PA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>SA PA PA PA SA</td>
<td>SA PA PA PA PA SA</td>
<td>SA PA PA PA PA</td>
<td>SA PA PA PA PA</td>
<td>SA PA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td>SA PA PA PA PA PA PA</td>
<td></td>
</tr>
</tbody>
</table>

Source: ASMFC
Table 21. Alewife Migration Patterns (SA = Some activity; PA = Peak Activity)

<table>
<thead>
<tr>
<th>State</th>
<th>Adult Immigration</th>
<th>Adult Emigration</th>
<th>Spawning</th>
<th>Incubation</th>
<th>Juvenile Freshwater Residence</th>
<th>Juvenile Emigration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: ASMFC
6.3.3 Shads (American and hickory)

Life history and stock status are summarized below. Additional details may be found in the ASMFC’s 2010 Amendment 3 to the Interstate Fishery Management Plan for Shad and River Herring (American Shad Management) available at http://www.asmfc.org/shadRiverHerring.htm (the text below is adopted from that document).

The American shad is the largest North American member of the shad and herring family, and historically occurred in all major rivers from Maine through the east coast of Florida. The management units for American shad under this Fishery Management Plan Amendment include all migratory American shad stocks of the Atlantic coast of the United States.

American shad are a migratory anadromous fish that spend most of their life at sea along the Atlantic coast and enter freshwater as adults in the spring to spawn. Most young emigrate from their natal rivers during their first year of life. American shad stocks are river-specific; that is, each major tributary along the Atlantic coast appears to have a discrete spawning stock. In addition to ocean waters, habitats used by American shad include adult spawning sites in coastal tributaries and larval and juvenile nursery areas in the freshwater portions of the rivers and their associated bays and estuaries. American shad migration patterns are charted in table 19.

Less information is available specifically for hickory shad. Although the distribution and movements of hickory shad are essentially unknown after they return to the ocean, due to harvest along the southern New England coast in the summer and fall it is assumed that they also follow a migratory pattern similar to American shad (ASMFC 2010).

Stock Status

No assessments are available for Hickory Shad but many runs are likely below historical levels for reasons similar to those discussed below for Atlantic Shad. The most recent shad stock assessment report identified that shad stocks are highly depressed from historical levels. Of the 24 stocks of American and hickory shad for which sufficient information was available, 11 were depleted relative to historic levels, 2 were increasing, and 11 were stable (but still below historic levels). The status of 8 additional stocks could not be determined because the time-series of data was too short or analyses indicated conflicting trends. Taken in total, American shad stocks do not appear to be recovering. The assessment concluded that current restoration actions need to be reviewed and new ones need to be identified and applied. These include fishing rates, dam passage, stocking, and habitat restoration. There are no coast-wide reference points.
Table 22. Shad Migration Patterns (SA = Some activity; PA = Peak Activity)

<table>
<thead>
<tr>
<th>State</th>
<th>Event</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td>Adult immigration</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Adult emigration</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Spawning</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
</tr>
<tr>
<td></td>
<td>Incubation</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile freshwater</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>residence</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile emigration</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>Adult immigration</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Adult emigration</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Spawning</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Incubation</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile freshwater</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>residence</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile emigration</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Adult immigration</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Adult emigration</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Spawning</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Incubation</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile freshwater</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>residence</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile emigration</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>Adult immigration</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Adult emigration</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Spawning</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Incubation</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile freshwater</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>residence</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile emigration</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td>Connecticut</td>
<td>Adult immigration</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Adult emigration</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Spawning</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Incubation</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile freshwater</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>residence</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile emigration</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td>New York</td>
<td>Adult immigration</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Adult emigration</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Spawning</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Incubation</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile freshwater</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>residence</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile emigration</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Adult immigration</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Adult emigration</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Spawning</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Incubation</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile freshwater</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>residence</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td></td>
<td>Juvenile emigration</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
</tr>
</tbody>
</table>

Source: ASMFC
6.3.4 Current Analyses

Given the purposes of Amendment 14, new analyses for Amendment 14 centered on River Herrings and Shads. The methods, detailed in Appendix 2, estimated total incidental catch of river herring (alewife and blueback herring) and hickory and American shad (RHS) by fleet. Fleets included in the analyses were those sampled by the Northeast Fisheries Observer Program (NEFOP) and were stratified by region fished (Mid-Atlantic versus New England), time (year and quarter), gear group, and mesh size. Appendix 3, describes the FMAT’s recommendations upon reviewing the analysis. The detailed results of these analyses are provided in Appendix 2, but as a summary, table A1 from that Appendix is reproduced here for convenience:

<table>
<thead>
<tr>
<th>Year</th>
<th>Alewife Catch</th>
<th>CV</th>
<th>American shad Catch</th>
<th>CV</th>
<th>Blueback herring Catch</th>
<th>CV</th>
<th>Herring NK Catch</th>
<th>CV</th>
<th>Hickory Shad Catch</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>20.35</td>
<td>0.49</td>
<td>58.92</td>
<td>0.60</td>
<td>19.60</td>
<td>0.39</td>
<td>7.08</td>
<td>1.03</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>55.31</td>
<td>0.68</td>
<td>25.81</td>
<td>0.34</td>
<td>78.94</td>
<td>0.44</td>
<td>331.34</td>
<td>0.72</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>68.24</td>
<td>0.48</td>
<td>104.27</td>
<td>0.25</td>
<td>115.41</td>
<td>0.37</td>
<td>110.46</td>
<td>0.48</td>
<td>39.35</td>
<td>0.00</td>
</tr>
<tr>
<td>1992</td>
<td>30.56</td>
<td>0.36</td>
<td>79.80</td>
<td>0.29</td>
<td>458.17</td>
<td>0.44</td>
<td>387.54</td>
<td>0.39</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>40.47</td>
<td>0.51</td>
<td>50.96</td>
<td>0.52</td>
<td>210.56</td>
<td>0.40</td>
<td>18.60</td>
<td>0.46</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>5.45</td>
<td>0.30</td>
<td>70.31</td>
<td>0.67</td>
<td>40.16</td>
<td>0.33</td>
<td>9.79</td>
<td>0.59</td>
<td>0.24</td>
<td>0.31</td>
</tr>
<tr>
<td>1995</td>
<td>6.36</td>
<td>0.48</td>
<td>17.17</td>
<td>0.41</td>
<td>213.50</td>
<td>0.43</td>
<td>51.89</td>
<td>1.44</td>
<td>0.02</td>
<td>1.42</td>
</tr>
<tr>
<td>1996</td>
<td>482.01</td>
<td>1.07</td>
<td>39.99</td>
<td>0.38</td>
<td>1803.43</td>
<td>2.10</td>
<td>28.68</td>
<td>0.43</td>
<td>26.64</td>
<td>0.82</td>
</tr>
<tr>
<td>1997</td>
<td>41.25</td>
<td>1.01</td>
<td>37.00</td>
<td>0.07</td>
<td>982.04</td>
<td>0.65</td>
<td>67.60</td>
<td>4.25</td>
<td>18.27</td>
<td>0.90</td>
</tr>
<tr>
<td>1998</td>
<td>80.88</td>
<td>1.47</td>
<td>55.31</td>
<td>0.43</td>
<td>49.32</td>
<td>1.27</td>
<td>0.42</td>
<td>0.65</td>
<td>39.19</td>
<td>1.45</td>
</tr>
<tr>
<td>1999</td>
<td>3.86</td>
<td>0.96</td>
<td>15.72</td>
<td>0.41</td>
<td>206.00</td>
<td>0.59</td>
<td>128.81</td>
<td>1.26</td>
<td>56.79</td>
<td>0.58</td>
</tr>
<tr>
<td>2000</td>
<td>28.37</td>
<td>0.67</td>
<td>74.99</td>
<td>1.82</td>
<td>55.46</td>
<td>0.37</td>
<td>21.96</td>
<td>0.53</td>
<td>0.06</td>
<td>0.80</td>
</tr>
<tr>
<td>2001</td>
<td>93.02</td>
<td>1.05</td>
<td>61.92</td>
<td>0.42</td>
<td>120.13</td>
<td>0.47</td>
<td>2.10</td>
<td>0.42</td>
<td>80.62</td>
<td>0.38</td>
</tr>
<tr>
<td>2002</td>
<td>2.72</td>
<td>3.86</td>
<td>24.07</td>
<td>0.41</td>
<td>173.23</td>
<td>0.31</td>
<td>76.51</td>
<td>1.85</td>
<td>1.41</td>
<td>1.05</td>
</tr>
<tr>
<td>2003</td>
<td>248.43</td>
<td>1.46</td>
<td>21.37</td>
<td>0.91</td>
<td>332.48</td>
<td>0.56</td>
<td>15.31</td>
<td>1.21</td>
<td>14.30</td>
<td>0.89</td>
</tr>
<tr>
<td>2004</td>
<td>99.74</td>
<td>0.93</td>
<td>18.16</td>
<td>0.35</td>
<td>81.54</td>
<td>0.47</td>
<td>176.74</td>
<td>0.74</td>
<td>35.03</td>
<td>0.78</td>
</tr>
<tr>
<td>2005</td>
<td>347.43</td>
<td>0.42</td>
<td>78.24</td>
<td>0.32</td>
<td>220.04</td>
<td>0.38</td>
<td>7.18</td>
<td>0.60</td>
<td>19.41</td>
<td>0.38</td>
</tr>
<tr>
<td>2006</td>
<td>57.61</td>
<td>0.91</td>
<td>29.29</td>
<td>4.37</td>
<td>187.48</td>
<td>0.67</td>
<td>232.02</td>
<td>1.16</td>
<td>13.35</td>
<td>0.81</td>
</tr>
<tr>
<td>2007</td>
<td>484.02</td>
<td>0.79</td>
<td>55.08</td>
<td>0.45</td>
<td>180.13</td>
<td>1.47</td>
<td>105.31</td>
<td>2.08</td>
<td>4.77</td>
<td>0.98</td>
</tr>
<tr>
<td>2008</td>
<td>145.03</td>
<td>0.43</td>
<td>52.38</td>
<td>0.32</td>
<td>526.59</td>
<td>0.57</td>
<td>327.99</td>
<td>0.40</td>
<td>7.83</td>
<td>0.65</td>
</tr>
<tr>
<td>2009</td>
<td>158.66</td>
<td>0.26</td>
<td>59.54</td>
<td>0.45</td>
<td>202.02</td>
<td>0.30</td>
<td>180.05</td>
<td>0.91</td>
<td>10.89</td>
<td>0.83</td>
</tr>
<tr>
<td>2010</td>
<td>115.50</td>
<td>0.20</td>
<td>46.12</td>
<td>0.17</td>
<td>125.02</td>
<td>0.20</td>
<td>86.50</td>
<td>0.32</td>
<td>1.12</td>
<td>0.65</td>
</tr>
</tbody>
</table>

As would hopefully be the case, the past and current analyses appear generally consistent to the degree that they can be compared. For example, in the new analyses the total catch of river herrings from 2005-2010 was 2,753 mt, with 32% or 881 mt caught in the Mid-Atlantic in quarter 1 by mid-water trawl vessels, which should be the mackerel fleet/fishery. 881 mt over 6 years is an average of 147 mt per year. This is pretty close to the 166 mt annual average estimated in specifications. The new analysis is substantially superior however in that like vessels are grouped together and then landings from those
similar vessels are used to generate estimates using the RH/S catch rates from those same kinds of grouped vessels.

When discards are subtracted from the catch estimates, the amount of “kept catch” of Atlantic Herring, for 2005-2010, closely matches the landings values in the dealer database, generally validating the catch estimation method. Comparisons for river herring and shad do not match in a similar fashion - this is not surprising given the reported discrepancies in reporting of landings of the four species.

Appendices 1 and 2 contain substantial discussion of estimated RH/S catch and will be referred to when discussing impacts of alternatives. For purposes of additional summary, key strata in terms of RH/S landings are listed below from Appendix 2:

Table 4 of Working Paper II summarizes estimated shad catch, by stratum, as a proportion of the total catch during 2005-2010.

The overall shad catches by gear type are as follows: Midwater Trawl (MWT): 42%; Large Mesh (5.5-8.0 in.) Gillnet: 27%; Small Mesh Bottom Trawl (SMBT): 26%.

The overall shad catches by area are as follows: Mid-Atlantic (M-A): 31%; New England (NE) 69%.

The overall shad catches by key quarter, area, and gear strata are as follows: Quarter 4 NE MWT: 13%; Q1 M-A MWT: 12%; Q3 NE MWT: 8%; Q3 NE Gillnet: (8%)Q4 NE Gillnet: (8%) (50% of total catch came from these 6 strata).

Table 5 of Working Paper II summarizes estimated river herring catch, by stratum, as a proportion of the total catch during 2005-2010.

The overall river herring catches by gear group are as follows: Midwater Trawl (MWT): 76%; Small Mesh (<= 3.5 in.) Bottom Trawl (SMBT): 24%.

The overall river herring catches by area are as follows: Mid-Atlantic (M-A): 44%; New England (NE) 56%.

The overall river herring catches by key quarter, area, and gear strata are as follows: Quarter 1 (Q1) M-A MWT: 35%; Q4 NE MWT: 16%; Q2 NE MWT: 11%; Q1 NE SMBT: 7%; Q3 NE MWT: 6%; Q3 NE SMBT: 5% (80% of total catch came from these 6 strata).

The key summary findings the FMAT concluded from these analyses are included in Appendix 3 and included the following points:

Lack of status information: Catch of river herring appears higher than shad but given the lack of coast-wide productivity and biological reference points for these stocks, it is not possible to quantify the impacts of these catches on stock status. This makes the impact analysis of alternatives extremely uncertain.

Overlap in managed/directed fisheries: Analysis of Atlantic herring and Atlantic mackerel landings suggests strong overlap between the two in terms of gear/mesh/area, especially in Q1 in the Mid-Atlantic.
Spatial-Temporal RH/S catch variability (observer data): GIS analyses of effort and catch rates of river herring and shad combined, by gear group, suggest that while there are some areas that appear to have high catch rates of RH/S and low effort, catch rates were generally highest in the areas where fishing effort was highest. The GIS analyses also indicated that areas with high catch rates during one time period may not show the same pattern in another time period.

Spatial-Temporal Effort and Directed Catch Variability: Analysis of the spatial distribution of effort by paired midwater trawls showed substantial variation among years. Analysis of the spatial distribution of mackerel catches also showed substantial variation when looking at one month to the next or the same month across years.

Spatial-Temporal catch variability in the Northeast Science Center Bottom Trawl RH/S: The results of earlier analyses showing substantial year-to-year variability in trawl survey catches of RH/S were noted. The sizes and locations of standard deviational ellipses that defined the core distributions of each species indicated a high degree of inter-annual variability during both spring and fall.

Comparison of catch estimates with landings

For 2005-2010, the ocean-intercept fisheries caught, on average, 63 mt of shad accordingly to the analysis described above. Shad landings provided by ASMFC over the same time period averaged 581 mt so ocean-intercept fisheries would appear to have represented a relatively low part of overall fishing mortality. The numbers in the analysis described above are best conceptualized as catch in ocean-intercept fisheries, which is why landings (much of which is riverine) can be so much higher.

For 2005-2010, the ocean-intercept fisheries caught, on average, 459 mt of river herring according to the analysis described above. River herring landings provided by ASMFC over the same time period averaged 601 mt so ocean-intercept fisheries would appear to have more relevance to river herring fishing mortality than shad fishing mortality. However, given the lack of reference points for any of the RH/S species, it is not possible to determine what effect, if any, these catch and/or landings quantities may be having on RH/S stocks.

For a historical perspective, the following figures provide river herring and shad landings over time per information provided by the ASMFC.
The current analyses (Appendix 2) found that small mesh bottom otter trawling in the Mid-Atlantic in quarter 3 appears to account for a very small portion of river herring and shad catch (2.0 % and 4.5%, respectively), confirming preliminary findings that the *Illex* fishery does not appear to substantially catch RH/S. The *Illex* fishery operates almost exclusively with small mesh bottom otter trawling in the Mid-Atlantic during June-Oct (mainly quarter 3). This is also consistent with the small mesh bottom trawl GIS analysis which shows that catch rates of all four species are very low offshore during quarter 3 (Figure 34 in Appendix 2).
The story for longfin squid is more complex. The longfin squid fishery occurs in New England and Mid-Atlantic waters; inshore during May-Oct and offshore during Nov-April (see Amendment 10 to the MSB FMP). In addition to the longfin squid fishery, other bottom trawl fisheries included in the "small-mesh" bottom trawl catch category include Atlantic herring, whiting, and Atlantic mackerel. Across regions, small mesh bottom trawls accounted for about 25% of either river herring or shad catches. Working paper II (Appendix II) found that during 2005-2010, Mid-Atlantic small mesh bottom trawls accounted for 6% of river herring and 12% of shad catches. Working paper II also found that during 2005-2010, New-England small mesh bottom trawl accounted for 18% of river herring and 14% of shad catches.

However, targeting information collected by NEFOP observers suggests that only a small portion of small mesh bottom trawl catches of RH/S are actually from longfin squid-targeted tows with herring accounting for most followed by mackerel and silver hake. While these are not extrapolated catches, and target species is self-reported to observers prior to each tow, on a relative basis the information suggests that the longfin squid fishery may not actually be accounting for that much RH/S catch, which is consistent with the directed-trip based analysis conducted annually for the specifications’ environmental assessment (provided above in section 6.3).

Most shad catch for observed bottom small mesh (codend or liner less than 3.5 inches) was not associated with a targeted species so a similar analysis is not feasible but shad catches appear low as described above.

Conclusion

River herring and shad are caught in the MSB fisheries. The mackerel fishery appears to catch the most river herring in the MSB fisheries, which is not surprising given that mid-water trawl gear appears responsible for most river herring catch overall. The mackerel fishery also appears to catch low levels of shad. The longfin squid fishery appears to catch low levels of RH/S, and the *Illex* fishery appears to catch very low levels of shad and little if any river herring. Based on the analysis from Tables 17 and 19, the mackerel fishery likely catches several times more RH/S than the longfin squid fishery, which was primarily why the Council selected more management measures for the mackerel fishery compared to the longfin squid fishery. The gear/region/season-focused analysis conducted for this Amendment (see Appendix 2, especially table 3 of that Appendix) also suggests that small-mesh fishing for longfin squid likely accounts for a relatively small amount of overall RH/S catch.

6.4 Habitat (Including Essential Fish Habitat (EFH))

Pursuant to the Magnuson Stevens Act / EFH Provisions (50 CFR Part 600.815 (a)(1)), an FMP must describe EFH by life history stage for each of the managed species in the plan. This information was previously described in Amendment 8 to the MSB FMP and was updated via Amendment 11 to the MSB FMP. EFH for the managed resource is described using fundamental information on habitat requirements by life history stage that is summarized in a series of documents produced by NMFS and available at: http://www.nefsc.noaa.gov/nefsc/habitat/efh/. This series of documents, as well as additional reports and publications, are used to provide the best available information on life history characteristics, habitat requirements, as well as ecological relationships. Matrices of habitat parameters (i.e. temperature, salinity, light, etc.) for eggs/larvae and juveniles/adults were developed in the mackerel, longfin squid and *Illex* squid and butterfish EFH background documents described above. Amendment 8 to the MSB FMP identified and described essential fish habitat for mackerel, longfin squid (except for eggs), *Illex*, and
butterfish, summarized below. Amendment 9 to the MSB FMP identified and described essential fish habitat for longfin squid eggs. Amendment 11 updated all of the EFH designations for MSB species and the associated textual descriptions and maps may be viewed here: http://mafmc.org/fmp/history/smb-hist.htm.

In general, the EFH for the MSB species is the water column itself, and the species have temperature and prey preferences/needs that drive the suitability of any particular area/depth, thus fishing activity has minimal impacts. Longfin squid also use hard bottom, submerged vegetation, other natural or artificial structure, and sand or mud to attach/anchor eggs, but there are no known preferences for different types of substrates or indications that fishing activity may negatively impact longfin squid egg EFH. The source documents cited above for RH/S and Atlantic herring may be consulted for additional habitat information for those species.

There are other lifestages of federally-managed species that have designated EFH that may be susceptible to adverse impacts from bottom-tending mobile gear as described below:

Table 23b. EFH descriptions for federally-managed species/life stages in the U.S. Northeast Shelf Ecosystem that are vulnerable to bottom tending fishing gear.

<table>
<thead>
<tr>
<th>Species</th>
<th>Life Stage</th>
<th>Geographic Area of EFH</th>
<th>Depth (meters)</th>
<th>Bottom Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>American plaice</td>
<td>juvenile</td>
<td>GOM, including estuaries from Passamaquoddy Bay to Saco Bay, ME and from Massachusetts Bay to Cape Cod Bay</td>
<td>45 - 150</td>
<td>Fine grained sediments, sand, or gravel</td>
</tr>
<tr>
<td>American plaice</td>
<td>adult</td>
<td>GOM, including estuaries from Passamaquoddy Bay to Saco Bay, ME and from Massachusetts Bay to Cape Cod Bay</td>
<td>45 - 175</td>
<td>Fine grained sediments, sand, or gravel</td>
</tr>
<tr>
<td>Atlantic cod</td>
<td>juvenile</td>
<td>GOM, GB, eastern portion of continental shelf off SNE, these estuaries: Passamaquoddy Bay to Saco Bay, Massachusetts Bay, Boston Harbor, Cape Cod Bay, Buzzards Bay</td>
<td>25 - 75</td>
<td>Cobble or gravel</td>
</tr>
<tr>
<td>Atlantic cod</td>
<td>adult</td>
<td>GOM, GB, eastern portion of continental shelf off SNE, these estuaries: Passamaquoddy Bay to Saco Bay, Massachusetts Bay, Boston Harbor, Cape Cod Bay, Buzzards Bay</td>
<td>10 - 150</td>
<td>Rocks, pebbles, or gravel</td>
</tr>
<tr>
<td>Atl halibut</td>
<td>juvenile</td>
<td>GOM and GB</td>
<td>20 - 60</td>
<td>Sand, gravel, or clay</td>
</tr>
<tr>
<td>Atl halibut</td>
<td>adult</td>
<td>GOM and GB</td>
<td>100 - 700</td>
<td>Sand, gravel, or clay</td>
</tr>
<tr>
<td>Barndoor skate</td>
<td>juvenile/adult</td>
<td>Eastern GOM, GB, SNE, Mid-Atlantic Bight to Hudson Canyon</td>
<td>10-750, most < 150</td>
<td>Mud, gravel, and sand</td>
</tr>
<tr>
<td>Black sea bass</td>
<td>juvenile/adult</td>
<td>GOM to Cape Hatteras, NC, including estuaries from Buzzards Bay to Long Island Sound, Gardiners Bay, Barnegat Bay to Chesapeake Bay, Tangier/ Pocomoke Sound, and James River</td>
<td>1 - 38</td>
<td>Rough bottom, shellfish/ eelgrass beds, manmade structures, offshore clam beds, and shell patches</td>
</tr>
<tr>
<td>Black sea bass</td>
<td>adult</td>
<td>GOM to Cape Hatteras, NC, including Buzzards Bay, Narragansett Bay, Gardiners Bay, Great South Bay, Barnegat Bay to Chesapeake Bay, and James River</td>
<td>20 - 50</td>
<td>Structured habitats (natural and manmade), sand and shell substrates preferred</td>
</tr>
<tr>
<td>Clearnose skate</td>
<td>juvenile/adult</td>
<td>GOM, along continental shelf to Cape Hatteras, NC, including the estuaries from Hudson River/Raritan Bay south to the Chesapeake Bay mainstem</td>
<td>0 – 500, most < 111</td>
<td>Soft bottom and rocky or gravelly bottom</td>
</tr>
<tr>
<td>Haddock</td>
<td>juvenile/adult</td>
<td>GB, GOM, and Mid-Atlantic south to Delaware Bay</td>
<td>35 - 100</td>
<td>Pebble and gravel</td>
</tr>
<tr>
<td>Haddock</td>
<td>adult</td>
<td>GB, eastern side of Nantucket Shoals, and throughout GOM</td>
<td>40 - 150</td>
<td>Broken ground, pebbles, smooth hard sand, and smooth areas between rocky patches</td>
</tr>
<tr>
<td>Little skate</td>
<td>juvenile/adult</td>
<td>GB through Mid-Atlantic Bight to Cape Hatteras, NC; includes estuaries from Buzzards Bay south to mainstem Chesapeake Bay</td>
<td>0-137, most 73 - 91</td>
<td>Sandy or gravelly substrate or mud</td>
</tr>
<tr>
<td>Species</td>
<td>Life Stage</td>
<td>Geographic Area of EFH</td>
<td>Depth (meters)</td>
<td>Bottom Type</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Ocean pout</td>
<td>eggs</td>
<td>GOM, GB, SNE, and Mid-Atlantic south to Delaware Bay, including the following estuaries: Passamaquoddy Bay to Saco Bay, Massachusetts Bay and Cape Cod Bay</td>
<td><50</td>
<td>Generally sheltered nests in hard bottom in holes or crevices</td>
</tr>
<tr>
<td>Ocean pout</td>
<td>juvenile</td>
<td>GOM, GB, SNE, Mid-Atlantic south to Delaware Bay and the following estuaries: Passamaquoddy Bay to Saco Bay, Massachusetts Bay, and Cape Cod Bay</td>
<td><50</td>
<td>Close proximity to hard bottom nesting areas</td>
</tr>
<tr>
<td>Ocean pout</td>
<td>adult</td>
<td>GOM, GB, SNE, Mid-Atlantic south to Delaware Bay and the following estuaries: Passamaquoddy Bay to Saco Bay, MA Bay, Boston Harbor, and Cape Cod Bay</td>
<td><80</td>
<td>Smooth bottom near rocks or algae</td>
</tr>
<tr>
<td>Pollock</td>
<td>adult</td>
<td>GOME, GB, SNE, and Mid-Atlantic south to New Jersey and the following estuaries: Passamaquoddy Bay to Saco Bay, Great Bay, MA Bay to Cape Cod Bay; Buzzards Bay to CT River, Hudson River, Raritan Bay, and Chesapeake Bay</td>
<td>15 – 365</td>
<td>Hard bottom habitats including artificial reefs</td>
</tr>
<tr>
<td>Red hake</td>
<td>juvenile</td>
<td>GOM, GB, continental shelf off SNE, and Mid-Atlantic south to Cape Hatteras, including the following estuaries: Passamaquoddy Bay to Saco Bay, Great Bay, MA Bay to Cape Cod Bay; Buzzards Bay to CT River, Hudson River, Raritan Bay, and Chesapeake Bay</td>
<td><100</td>
<td>Shell fragments, including areas with an abundance of live scallops</td>
</tr>
<tr>
<td>Red hake</td>
<td>adult</td>
<td>GOM, GB, continental shelf off SNE, Mid-Atlantic south to Cape Hatteras, these estuaries: Passamaquoddy Bay to Saco Bay, Great Bay, MA Bay to Cape Cod Bay; Buzzards Bay to CT River, Hudson River, Raritan Bay, and Chesapeake Bay</td>
<td>10 - 130</td>
<td>In sand and mud, in depressions</td>
</tr>
<tr>
<td>Redfish</td>
<td>juvenile</td>
<td>GOM, southern edge of GB</td>
<td>25 - 400</td>
<td>Silt, mud, or hard bottom</td>
</tr>
<tr>
<td>Redfish</td>
<td>adult</td>
<td>GOM, southern edge of GB</td>
<td>50 - 350</td>
<td>Silt, mud, or hard bottom</td>
</tr>
<tr>
<td>Rosette skate</td>
<td>juvenile/adult</td>
<td>Nantucket shoals and southern edge of GB to Cape Hatteras, NC</td>
<td>33-530, most</td>
<td>Soft substrate, including sand/mud bottoms</td>
</tr>
<tr>
<td>Scup</td>
<td>juvenile/adult</td>
<td>GOM to Cape Hatteras, NC, including the following estuaries: MA Bay, Cape Cod Bay to Long Island Sound, Gardiners Bay to Delaware inland bays, and Chesapeake Bay</td>
<td>0-38 for juv</td>
<td>Demersal waters north of Cape Hatteras and inshore estuaries (various substrate types)</td>
</tr>
<tr>
<td>Silver hake</td>
<td>juvenile</td>
<td>GOM, GB, continental shelf off SNE, Mid-Atlantic south to Cape Hatteras and the following estuaries: Passamaquoddy Bay to Casco Bay, ME, MA Bay to Cape Cod Bay</td>
<td>20 – 270</td>
<td>All substrate types</td>
</tr>
<tr>
<td>Summer Flounder</td>
<td>juvenile/adult</td>
<td>GOM to Florida – estuarine and over continental shelf to shelf break</td>
<td>0-250</td>
<td>Demersal/estuarine waters, varied substrates. Mostly inshore in summer and offshore in winter.</td>
</tr>
<tr>
<td>Smooth skate</td>
<td>juvenile/adult</td>
<td>Offshore banks of GOM</td>
<td>31-874, most</td>
<td>Soft mud (silt and clay), sand, broken shells, gravel and pebbles</td>
</tr>
<tr>
<td>Thorny skate</td>
<td>juvenile/adult</td>
<td>GOM and GB</td>
<td>18-2000, most</td>
<td>Sand, gravel, broken shell, pebbles, and soft mud</td>
</tr>
<tr>
<td>Tilefish</td>
<td>juvenile/adult</td>
<td>Outer continental shelf and slope from the U.S./Canadian boundary to the Virginia/North Carolina boundary</td>
<td>100 - 300</td>
<td>Burrows in clay (some may be semi-hardened into rock)</td>
</tr>
<tr>
<td>White hake</td>
<td>juvenile</td>
<td>GOM, southern edge of GB, SNE to Mid-Atlantic and the following estuaries: Passamaquoddy Bay, ME to Great Bay, NH, Massachusetts Bay to Cape Cod Bay</td>
<td>5 - 225</td>
<td>Seagrass beds, mud, or fine grained sand</td>
</tr>
<tr>
<td>Winter flounder</td>
<td>adult</td>
<td>GB, inshore areas of GOM, SNE, Mid-Atlantic south to Delaware Bay and the estuaries from Passamaquoddy Bay, ME to Chincoteague Bay, VA</td>
<td>1 - 100</td>
<td>Mud, sand, and gravel</td>
</tr>
<tr>
<td>Winter skate</td>
<td>juvenile/adult</td>
<td>Cape Cod Bay, GB, SNE shelf through Mid-Atlantic Bight to North Carolina; includes the estuaries from Buzzards Bay south to the Chesapeake Bay mainstream</td>
<td>0 - 371, most</td>
<td>Sand and gravel or mud</td>
</tr>
<tr>
<td>Witch flounder</td>
<td>juvenile</td>
<td>GOM, outer continental shelf from GB south to Cape Hatteras</td>
<td>50 - 450 to 1500</td>
<td>Fine grained substrate</td>
</tr>
<tr>
<td>Witch flounder</td>
<td>adult</td>
<td>GOME, outer continental shelf from GB south to Chesapeake Bay</td>
<td>25 - 300</td>
<td>Fine grained substrate</td>
</tr>
<tr>
<td>Species</td>
<td>Life Stage</td>
<td>Geographic Area of EFH</td>
<td>Depth (meters)</td>
<td>Bottom Type</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>--</td>
<td>----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Yellowtail flounder</td>
<td>adult</td>
<td>GB, GOM, SNE and Mid-Atlantic south to Delaware Bay and these estuaries: Sheepscot River and Casco Bay, ME, MA Bay to Cape Cod Bay</td>
<td>20 - 50</td>
<td>Sand or sand and mud</td>
</tr>
</tbody>
</table>

For reference purposes, there are two primary gear types in use in the mackerel and longfin squid fisheries, mid-water trawl and bottom-otter trawl. Mid water trawling, as the name suggests, would not be expected to have substantial contact with the bottom. Bottom-otter trawls on the other hand are fished on the bottom. Habitat disturbance depends on how heavily or lightly the gear is fished on the bottom and can occur from the metal doors that spread the net along the bottom or from the net itself or attachments to the net (for example chaff guards) that make contact with the bottom.

The source documents cited above for RH/S and Atlantic herring may be consulted for additional habitat information for those species.

6.5 Endangered and Protected Species

There are numerous species which inhabit the environment within the management unit of this FMP that are afforded protection under the Endangered Species Act (ESA) of 1973 (i.e., for those designated as threatened or endangered) and/or the Marine Mammal Protection Act of 1972 (MMPA). 18 are classified as endangered or threatened under the ESA, while the rest are protected by the provisions of the MMPA. The subset of these species that are known to have interacted with the MSB fisheries is provided in this document section. The Council has determined that the following list of species protected either by the Endangered Species Act of 1973 (ESA), the Marine Mammal Protection Act of 1972 (MMPA), or the Migratory Bird Treaty Act of 1918 may be found in the environment utilized by Atlantic mackerel, squid and butterfish fisheries:

This list also includes three candidate fish species and one proposed fish species (species being considered for listing as an endangered or threatened species), as identified under the ESA.

Candidate species are those petitioned species that are actively being considered for listing as endangered or threatened under the ESA, as well as those species for which NMFS has initiated an ESA status review that it has announced in the *Federal Register*. Cusk, alewife, and blueback herring are candidate species known to occur within the action area of the MSB fisheries and have documented interactions with types of gear used in MSB fisheries.

Candidate species receive no substantive or procedural protection under the ESA; however, NMFS recommends that project proponents consider implementing conservation actions to limit the potential for adverse effects on candidate species from any proposed project. The Protected Resources Division of the NMFS Northeast Regional Office has initiated review of recent stock assessments, discards information, and other information for these candidate species which will be incorporated in the status review reports for both candidate species. The results of those efforts are needed to accurately characterize recent interactions between fisheries and the candidate species in the context of stock sizes. Any conservation measures deemed appropriate for these species will follow the information from these reviews. Please note that the conference provisions apply only if a candidate species is proposed for listing (and thus, becomes a proposed species) (see 50 CFR 402.10).”

* = Known to have interacted with MSB fisheries or gear types
Cetaceans

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Atlantic right whale (Eubalaena glacialis)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Humpback whale (Megaptera novaeangliae)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Fin whale (Balaenoptera physalus)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Blue whale (Balaenoptera musculus)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Sei whale (Balaenoptera borealis)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Sperm whale (Physeter macrocephalus)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Minke whale (Balaenoptera acutorostrata)</td>
<td>Protected</td>
</tr>
<tr>
<td>Beaked whales (Ziphius and Mesoplodon spp.)</td>
<td>Protected</td>
</tr>
<tr>
<td>*Risso's dolphin (Grampus griseus)</td>
<td>Protected</td>
</tr>
<tr>
<td>*Pilot whale (Globicephala spp.)</td>
<td>Protected</td>
</tr>
<tr>
<td>*White-sided dolphin (Lagenorhynchus acutus)</td>
<td>Protected</td>
</tr>
<tr>
<td>*Common dolphin (Delphinus delphis)</td>
<td>Protected</td>
</tr>
<tr>
<td>Spotted and striped dolphins (Stenella spp.)</td>
<td>Protected</td>
</tr>
<tr>
<td>*Bottlenose dolphin (Tursiops truncatus)</td>
<td>Protected</td>
</tr>
</tbody>
</table>

Pinnipeds

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Harbor Seal (Phoca vitulina concolor)</td>
<td>Protected</td>
</tr>
<tr>
<td>*Gray Seal (Halichoerus grypus grypus)</td>
<td>Protected</td>
</tr>
<tr>
<td>*Harp Seal (Pagophilus groenlandicus)</td>
<td>Protected</td>
</tr>
</tbody>
</table>

Sea Turtles

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Leatherback sea turtle (Dermochelys coriacea)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Kemp's ridley sea turtle (Lepidochelys kempi)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Green sea turtle (Chelonia mydas)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Hawksbill sea turtle (Eretmochelys imbricata)</td>
<td>Endangered</td>
</tr>
<tr>
<td>*Loggerhead sea turtle (Caretta caretta)</td>
<td>Threatened (Northwest Atlantic DPS)</td>
</tr>
</tbody>
</table>

Fish

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortnose sturgeon (Acipenser brevirostrum)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Atlantic salmon (Salmo salar)</td>
<td>Endangered (Gulf of Maine DPS)</td>
</tr>
<tr>
<td>*Atlantic sturgeon (Acipenser oxyrinchus)</td>
<td></td>
</tr>
<tr>
<td>Gulf of Maine DPS</td>
<td>Threatened</td>
</tr>
<tr>
<td>New York Bight DPS</td>
<td>Endangered</td>
</tr>
<tr>
<td>Chesapeake Bay DPS</td>
<td>Endangered</td>
</tr>
<tr>
<td>Carolina DPS</td>
<td>Endangered</td>
</tr>
<tr>
<td>South Atlantic DPS</td>
<td>Endangered</td>
</tr>
<tr>
<td>Cusk (Brosme brosme)</td>
<td>Candidate</td>
</tr>
<tr>
<td>Alewife (Alosa pseudoharengus)</td>
<td>Candidate</td>
</tr>
</tbody>
</table>
Blueback herring (*Alosa aestivalis*) Candidate

Birds

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Gannet (Morus bassanus)</td>
<td>Protected</td>
</tr>
</tbody>
</table>

Protected Species Interactions with the Managed Resources – Includes Fishery Classification under Section 118 of Marine Mammal Protection Act

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common dolphin (Delphinus delphis)</td>
<td>Protected</td>
</tr>
<tr>
<td>White-sided dolphin (Lagenorhynchus acutus)</td>
<td>Protected</td>
</tr>
<tr>
<td>Pilot whale (Globicephala spp.)</td>
<td>Protected</td>
</tr>
<tr>
<td>Risso's dolphin (Grampus griseus)</td>
<td>Protected</td>
</tr>
<tr>
<td>Bottlenose dolphin (Tursiops truncatus)</td>
<td>Protected</td>
</tr>
<tr>
<td>Leatherback sea turtle (Dermochelys coriacea)</td>
<td>Endangered</td>
</tr>
<tr>
<td>Loggerhead sea turtle (Caretta caretta)</td>
<td>Threatened</td>
</tr>
<tr>
<td>Harbor, Grey, and Harp Seals</td>
<td>Protected</td>
</tr>
</tbody>
</table>

Under section 118 of the MMPA, the NMFS must publish and annually update the List of Fisheries, which places all U.S. commercial fisheries in one of three categories based on the level of serious injury and mortality of marine mammals in each fishery (arranging them according to a two tiered classification system). The categorization of a fishery in the List of Fisheries determines whether participants in that fishery may be required to comply with certain provisions of the MMPA, such as registration, NEFOP observer coverage, and take reduction plan requirements. The classification criteria consists of a two tiered, stock-specific approach that first addresses the total impact of all fisheries on each marine mammal stock (Tier 1) and then addresses the impact of the individual fisheries on each stock (Tier 2). If the total annual mortality and serious injury of all fisheries that interact with a stock is less than 10% of the Potential Biological Removal for the stock then the stock is designated as Tier 1 and all fisheries interacting with this stock would be placed in Category III. Otherwise, these fisheries are subject to categorization under Tier 2. Potential Biological Removal is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3; 16 U.S.C. 1362; Wade and Angliss 1997). The current (2011) list of fisheries is available at: http://www.nmfs.noaa.gov/pr/interactions/lof/.

Under Tier 2, individual fisheries are subject to the following categorization:

Category I. Annual mortality and serious injury of a stock in a given fishery is greater than or equal to 50% of the Potential Biological Removal level;

Category II. Annual mortality and serious injury of a stock in a given fishery is greater than one percent and less than 50% of the Potential Biological Removal level; or
Category III. Annual mortality and serious injury of a stock in a given fishery is less than one percent of the Potential Biological Removal level.

Note: unlike the rest of this document, incidental take of marine mammals or endangered species does not mean that they were retained or landed.

In Category I, there is documented information indicating a "frequent" mortality and injury of marine mammals in the fishery. In Category II, there is documented information indicating an "occasional" mortality and injury of marine mammals in the fishery. In Category III, there is information indicating no more than a "remote likelihood" of an incidental taking of a marine mammal in the fishery or, in the absence of information indicating the frequency of incidental taking of marine mammals, other factors such as fishing techniques, gear used, methods used to deter marine mammals, target species, seasons and areas fished, and species and distribution of marine mammals in the area suggest there is no more than a remote likelihood of an incidental take in the fishery. "Remote likelihood" means that annual mortality and serious injury of a stock in a given fishery is less than or equal to 10% of the Potential Biological Removal level or, which it is highly unlikely that any marine mammal will be incidentally taken by a randomly selected vessel in the fishery during a 20-day period or, in the absence of reliable information it is at the discretion of the Assistant Administrator for Fisheries to determine whether the injury or mortality qualifies (or not) for a specific category.

Marine Mammal Stock Assessment Reports:

As required by the Marine Mammal Protection Act (MMPA), NMFS has incorporated earlier public comments into revisions of marine mammal stock assessment reports (SARs). These reports contain information regarding the distribution and abundance of the stock, population growth rates and trends, the stock's Potential Biological Removal level, estimates of annual human-caused mortality and serious injury from all sources, descriptions of the fisheries with which the stock interacts, and the status of the stock. The MMPA requires these assessments to be reviewed at least annually for strategic stocks and stocks for which significant new information is available, and at least once every 3 years for non-strategic stocks. The most recent SARs are available at: http://www.nmfs.noaa.gov/pr/sars/.

NMFS elevated the (mid-water) MSB fishery to Category I in the 2001 List of Fisheries but it was reduced to a Category II fishery in 2007 (see discussion below describing the Atlantic Trawl Gear Take Reduction Plan). The reduction in interactions documented between the MSB fisheries and several species/stocks of marine mammals compared to previous years led to the re-classification. No classification changes have occurred since 2007.

6.5.1 Description of species that are known to interact with MSB fisheries

The following is a description of species that are protected under the MMPA and, as discussed above, have had documented interactions with fishing gears used to harvest species managed under this FMP (i.e. may interact with the Atlantic Mackerel Squid and Butterfish fisheries):

Common dolphin (PBR = 1000, all fisheries annual take 2005-2009 = 164)

The common dolphin may be one of the most widely distributed species of cetaceans, as it is found worldwide in temperate, tropical, and subtropical seas. They are widespread from Cape Hatteras
northeast to Georges Bank (35 to 42 North latitude) in outer continental shelf waters from mid-January to May. Exact total numbers of common dolphins off the US or Canadian Atlantic coast are unknown, although the most recent Stock Assessment Report considers the best abundance estimate for common dolphins to be 120,743 animals (Coefficient of Variation (CV) = 0.23). This is the sum of the estimates from two 2004 U.S. Atlantic surveys, where the estimate for the northern U.S. Atlantic is 90,547 (CV = 0.24) and 30,196 (CV = 0.54) for the southern U.S. Atlantic. PBR for the western North Atlantic common dolphin is 1000. See Waring et al. 2011 (http://www.nefsc.noaa.gov/publications/tm/tm221/) for more life history information.

Fishery Interactions - The following fishery interaction information was taken from the latest stock assessment for common dolphin contained in Waring et al. (2011) which summarizes incidental mortality of this species. Annual averages are presented below – details on encounters may be reviewed in Waring et al (2011).

Illex/Longfin squid/butterfish - These fisheries are included in both the Northeast and Mid-Atlantic bottom trawl fisheries. The 2005-2009 average annual mortality attributed to the northeast bottom trawl was 23 animals (CV = 0.13). The 2005-2009 average annual mortality attributed to the Mid-Atlantic bottom trawl was 110 animals (CV = 0.13). The portion attributable to the directed Illex/longfin squid fisheries is unknown.

Atlantic Mackerel - This fishery is primarily prosecuted with mid-water trawl in the Mid-Atlantic but also with bottom trawl as well. As noted above, the mean estimated annual mortality of common dolphin during the five year period 2005-2009 in the Mid-Atlantic bottom trawl fishery was 110 animals (CV = 0.13). For the Mid-Atlantic mid-water trawl fishery the mean estimated annual mortality of common dolphin was 1 (CV = 0.7) during the five year period 2005-2009. The portion attributable to the directed Atlantic mackerel fishery is unknown.

Atlantic white-sided dolphin (*Lagenorhynchus acutus*) (PBR = 190, all fisheries annual take 2005-2009 = 245)

Atlantic white-sided dolphins (*Lagenorhynchus acutus*) are found in temperate and sub-polar waters of the North Atlantic, primarily in continental shelf waters to the 100m depth contour. The exact total number of white-sided dolphins (*Lagenorhynchus acutus*) along the eastern US and Canadian Atlantic coast is unknown, although the best available current abundance estimate for white-sided dolphins in the western North Atlantic stock is 23,390 (CV = 0.23), the sum of the 2006 and 2007 surveys. PBR for the western North Atlantic stock of white-sided dolphin (*Lagenorhynchus acutus*) is 190. See Waring et al. 2011 (http://www.nefsc.noaa.gov/publications/tm/tm221/) for more life history information.

Fishery Interactions - The following information was taken from the latest stock assessment for white-sided dolphin (*Lagenorhynchus acutus*) contained in Waring et al (2011) which summarized incidental mortality of this species. Annual averages are presented below – details on encounters may be reviewed in Waring et al (2011).

Illex/Longfin squid/butterfish - These fisheries are included in both the Northeast and Mid-Atlantic bottom trawl fisheries. The 2005-2009 average annual mortality attributed to the northeast bottom trawl was 160 animals (CV = 0.14). The 2005-2009 average annual mortality attributed to the Mid-Atlantic
bottom trawl was 23 animals (CV=0.12). The portion attributable to the directed Illex/longfin squid fisheries is unknown.

Atlantic Mackerel - This fishery is primarily prosecuted with mid-water trawl in the Mid-Atlantic but also with bottom trawl as well. As noted above, the mean estimated annual mortality during the five year period 2005-2009 in the Mid-Atlantic bottom trawl fishery was 23 animals (CV=0.12). For the Mid-Atlantic mid-water trawl fishery the mean estimated annual mortality of common dolphin was 24 (CV=0.55) during the five year period 2005-2009. The portion attributable to the directed Atlantic mackerel fishery is unknown.

Long-finned (Globicephala melas) and short-finned (Globicephala macrorhynchus) pilot whales (PBR = 265, all fisheries annual take 2005-2009 = 162)

There are two species of pilot whales in the Western Atlantic - the Atlantic (or long-finned) pilot whale, *Globicephala melas*, and the short-finned pilot whale, *G. macrorhynchus*. These species (sp.) are difficult to identify to the species level at sea. Preliminary analysis suggests the following distribution of the two species: sightings south of the mouth of the Chesapeake Bay are likely short-finned pilot whales, as are offshore (near the 4,000m depth contour) sightings from off the mouth of the Chesapeake Bay through off New Jersey. Sightings from the mouth of the Chesapeake Bay to the Southern Edge of Georges Bank along the 100/1,000 m depth contours are likely mixed. Sightings in the Gulf of Maine and east and north of Cape Cod are likely long-finned pilot whales, as are sightings in shelf waters immediately southeast of Nantucket. The minimum population size for short-finned pilot whales is estimated to be 17,190 and the minimum population size for long-finned pilot whales is estimated to be 9,333. PBR for short-finned pilot whales is estimated to be 172 and PBR for long-finned pilot whales is estimated to be 93 (total is 265). See Waring *et al.* 2011 (http://www.nefsc.noaa.gov/publications/tm/tm221/) for more life history information.

Fishery Interactions - The following information was taken from the latest stock assessment for pilot whales (*Globicephala* sp.) contained in Waring *et al.* (2011) which summarized incidental mortality of this species. Annual averages are presented below – details on encounters may be reviewed in Waring *et al.* (2011).

Illex/Longfin squid/butterfish - These fisheries are included in both the Northeast and Mid-Atlantic bottom trawl fisheries. The 2005-2009 average annual mortality attributed to the northeast bottom trawl was 12 animals (CV=0.14). The 2005-2009 average annual mortality attributed to the Mid-Atlantic bottom trawl was 30 animals (CV=0.16). The portion attributable to the directed Illex/longfin squid fisheries is unknown.

Atlantic Mackerel - This fishery is primarily prosecuted with mid-water trawl in the Mid-Atlantic but also with bottom trawl as well. As noted above, the mean estimated annual mortality during the five year period 2005-2009 in the Mid-Atlantic bottom trawl fishery was 30 animals (CV=0.16). For the Mid-Atlantic mid-water trawl fishery the mean estimated annual mortality of common dolphin was 2.4 (CV=0.99) during the five year period 2005-2009. The portion attributable to the directed Atlantic mackerel fishery is unknown.
Risso's dolphin (*Grampus griseus*) (PBR = 124, all fisheries annual take 2005-2009 = 18)

Risso's dolphins are distributed worldwide in tropical and temperate seas, and in the Northwest Atlantic occur from Florida to eastern Newfoundland. Off the northeast U.S. coast, Risso's dolphins are distributed along the continental shelf edge from Cape Hatteras northward to Georges Bank during spring, summer, and autumn. In winter, the range is in the Mid-Atlantic Bight and extends outward into oceanic waters. The minimum population estimate for the western North Atlantic Risso’s dolphin is 12,920. See Waring *et al*. 2011 (http://www.nefsc.noaa.gov/publications/tm/tm219/) for more life history information.

Fishery Interactions - NMFS foreign-fishery observers reported four deaths of Risso's dolphins incidental to squid and mackerel fishing activities in the continental shelf and continental slope waters between March 1977 and December 1991. In the pelagic pair trawl fishery, one mortality was observed in 1992.

Mid-Atlantic Mid-water Trawl

One Risso’s dolphin mortality was observed in this fishery for the first time in 2008. No discards estimate has been generated.

Bottlenose dolphin (*Tursiops truncatus*) Offshore Form. (PBR = 566, all fisheries take is unknown)

There are two morphologically and genetically distinct bottlenose dolphin morphotypes described as the coastal and offshore forms. Both inhabit waters in the western North Atlantic Ocean along the U.S. Atlantic coast. See Waring *et al*. 2011 (http://www.nefsc.noaa.gov/publications/tm/tm221/) for more life history information.

Fisheries Information

During 2007-2011, five offshore bottlenose dolphins were observed in the Northeast bottom trawl fishery: 4 in 2007 and 1 in 2010. In this same 5-year period, eight animals were observed in the mid-Atlantic bottom trawl fishery: 1 in 2009, 5 in 2010, and 2 in 2011. The offshore bottlenose dolphin stock assessment is presently under revision and will be published in the 2013 stock assessment report.

Earlier Interactions

Thirty-two bottlenose dolphin mortalities were observed in the pelagic pair trawl fishery between 1991 and 1995. Estimated annual fishery-related mortality (CV in parentheses) was 13 dolphins in 1991 (0.52), 73 in 1992 (0.49), 85 in 1993 (0.41), 4 in 1994 (0.40) and 17 in 1995 (0.26).

Although there were reports of bottlenose dolphin mortalities in the foreign squid mackerel butterfish fishery during 1977-1988, there were no fishery-related mortalities of bottlenose dolphins reported in the self-reported fisheries information from the mackerel trawl fishery during 1990-1992.

One bottlenose dolphin mortality was documented in the North Atlantic bottom trawl in 1991 and the total estimated mortality in this fishery in 1991 was 91 (CV=0.97).
Harbor Seals

The harbor seal is found in all nearshore waters of the North Atlantic and North Pacific Oceans and adjoining seas above about 30°N. In the western North Atlantic, they are distributed from the eastern Canadian Arctic and Greenland south to southern New England and New York, and occasionally to the Carolinas. Present data are insufficient to calculate a minimum population estimate for this stock. There are insufficient data to determine the population trends for this stock.

In Northeast Bottom Trawl fisheries, seven harbor seal mortalities were observed between 2001 and 2007, 1 in 2002, 1 in 2005, 3 in 2007, 0 in 2008, and 1 in 2009. The estimated annual fishery-related mortality and serious injury attributable to this fishery has not been generated. See Waring et al. 2011 (http://www.nefsc.noaa.gov/publications/tm/tm221/) for more information.

Grey Seals

The gray seal is found on both sides of the North Atlantic, with three major populations: eastern Canada, northwestern Europe and the Baltic Sea. The western North Atlantic stock is equivalent to the eastern Canada population, and ranges from New York to Labrador. Current estimates of the total western Atlantic gray seal population are not available. Gray seal abundance is likely increasing in the U.S. Atlantic Exclusive Economic Zone (EEZ), but the rate of increase is unknown.

Vessels in the North Atlantic bottom trawl fishery, a Category III fishery under MMPA, were observed in order to meet fishery management, rather than marine mammal management needs. No mortalities were observed prior to 2005, when four mortalities were attributed to this fishery. No mortalities were observed in 2006. The estimated annual fishery-related mortality and serious injury attributable to this fishery was 0 between 2001 and 2004, and for 2006. Nine gray seal mortalities were attributed to this fishery in 2007, 4 in 2008 and 8 in 2009. Total estimates have not been generated. See Waring et al. 2011 (http://www.nefsc.noaa.gov/publications/tm/tm221/) for more information.

Harp Seals

The harp seal occurs throughout much of the North Atlantic and Arctic Oceans. Since the early 1990s, numbers of sightings and strandings have been increasing off the east coast of the United States from Maine to New Jersey. These usually occur in January-May when the western North Atlantic stock of harp seals is at its most southern point of migration. The best estimate of abundance for western North Atlantic harp seals is 6.9 million. The minimum population estimate based on the 2008 pup survey results is 6.5 million seals. Data are insufficient to calculate the minimum population estimate for U.S. waters.

Four mortalities were observed in the Northeast bottom trawl fishery between 2002 and 2009. The estimated annual fishery-related mortality and serious injury attributable to this fishery (CV in parentheses) was 0 between 1991 and 2000, 49 (CV=1.10) in 2001, and 0 in 2002-2004, and 0 in 2006–2008. Estimates have not been generated for 2005 or 2009.
6.5.2 Atlantic Trawl Gear Take Reduction Plan

In September 2006, the National Oceanic and Atmospheric Administration’s (NOAA) National Marine Fisheries Service (NMFS) convened the Atlantic Trawl Gear Take Reduction Team (ATGTRT) under the Marine Mammal Protection Act (MMPA). The ATGTRT was convened to address incidental mortality and serious injury of long-finned pilot whales (*Globicephala melas*), short-finned pilot whales (*Globicephala macrorhynchus*), common dolphins (*Delphinus delphis*), and Atlantic white-sided dolphins (*Lagenorhynchus acutus*) in several trawl gear fisheries operating in the Atlantic Ocean. These marine mammal species are known to interact with the Mid-Atlantic Mid-Water Trawl, the Mid-Atlantic Bottom Trawl, Northeast Mid-Water Trawl and the Northeast Bottom Trawl fisheries.

Section 118 of the MMPA establishes a method for managing incidental interactions between marine mammals and commercial fisheries. Under section 118, Take Reduction Plans (Take Reduction Plans) are developed to identify actions necessary to conserve and protect strategic marine mammal stocks that interact with Category I and II fisheries. The immediate goal of a Take Reduction Plan is to reduce, within six months of implementation, the incidental serious injury or mortality of marine mammals from commercial fishing to levels less than Potential Biological Removal. The long-term goal is to reduce, within five years of its implementation, the incidental serious injury and mortality of marine mammals from commercial fishing operations to insignificant levels approaching a zero serious injury and mortality rate, taking into account the economics of the fishery, the availability of existing technology, and existing state or regional fishery management plans.

Take Reduction Teams (TRTs) consisting of representatives from the fishing industry, fishery management councils, state and federal resource management agencies, the scientific community and conservation organizations develops the Take Reduction Plan while NMFS is responsible for its implementation. After a Take Reduction Plan is finalized, the Take Reduction Team and NMFS meet periodically to monitor implementation of the plan and update as necessary. Take reduction plans must recommend regulatory or voluntary measures for the reduction of incidental mortality and serious injury; and recommend dates for achieving the specific objectives of the plan.

Presently, none of these marine mammal stocks under consideration by the ATGTRT are classified as a strategic stock nor do they currently interact with a Category I fishery. At its first meeting the ATGTRT raised several issues critical to the take reduction planning process and the development of an Atlantic Trawl Gear Take Reduction Plan. The ATGTRT requested clarification of the requirements under the MMPA for development of a take reduction plan for marine mammal stocks that are non-strategic and that do not interact with Category I fisheries. Specifically, the ATGTRT wanted to know if the 11 month timeline specified in the MMPA for the development of a Take Reduction Plan and the 5 year timeline for reaching Zero Mortality Rate Goal apply under the specific circumstances of

1 The MMPA defines the term “strategic stock” to mean a marine mammal stock (A) for which the level of direct human-caused mortality exceeds the potential biological removal level; (B) _____is declining and is likely to be listed as a threatened species under the Endangered Species Act (ESA) of 1973 within the foreseeable future; or (C) _____is listed as a threatened or endangered species under the ESA or is designated as a depleted stock under this Act. The term “potential biological removal level” means the maximum number of animals, not including natural mortalities that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population.

2 NMFS must publish, at least annually, a List of Fisheries that classifies U.S. commercial fisheries into one of three categories, based on the relative frequency of incidental serious injuries and mortalities of marine mammals in each fishery:
 - Category I designates fisheries with frequent serious injuries and mortalities incidental to commercial fishing;
 - Category II designates fisheries with occasional serious injuries and mortalities;
 - Category III designates fisheries with a remote likelihood or no known serious injuries or mortalities.
the ATGTRT. The ATGTRT also requested that NMFS conduct a Tier Analysis for the 2007 annual List of Fisheries to verify whether the Squid, Mackerel Butterfish Fishery (Mid-Atlantic Midwater Trawl Fishery) should remain as a Category I fishery or be reclassified as a Category II fishery.

NOAA General Counsel provided detailed legal guidance regarding the Take Reduction Plan timeline and requirements for development of a Take Reduction Plan for marine mammal stocks that are non-strategic in response to questions raised by the ATGTRT. In short, NOAA’s General Counsel legal guidance stated that neither the 11 month timeline for the development of a Take Reduction Plan nor the 5 year goal for reaching a Zero Mortality Rate Goal apply to non-strategic stocks that do not interact with Category I fisheries.

The ATGTRT agreed that while an Atlantic Trawl Gear Take Reduction Plan may not be required at this time, efforts should be made to identify and conduct research necessary to identify measures to reduce serious injury and mortality of marine mammals in Atlantic trawl fisheries and, ultimately, to achieve the MMPA’s Zero Mortality Rate Goal through a trawl take reduction research plan. This information is captured in the Atlantic Trawl Gear Take Reduction Strategy (ATGTRS).

In addition, the ATGTRT recommended that certain voluntary measures be implemented immediately for the Atlantic trawl fisheries in defined areas. NMFS funded outreach placards highlighting these voluntary measures. The placards were designed in collaboration with Garden State Seafood Association, who is also a member of the ATGTRT.

The ATGTRT recommended that two plans be developed to achieve the overall goal of the Take Reduction Strategy to reduce the incidental take of marine mammals in Atlantic trawl fisheries. These include an Education and Outreach Plan and a Research Plan as part of an overall take reduction strategy. The ATGTRT established two sub-groups to develop the Education and Outreach and Research Plans. The Education and Outreach Plan identifies activities that promote the exchange of information necessary to reduce the catch of marine mammals in Atlantic trawl fisheries. The Research Plan identifies information and research needs necessary to improve our understanding of the factors resulting in catch in Atlantic trawl fisheries. The results of the identified research will be used to direct additional research and/or identify measures to reduce the serious injury and mortality of short- and long-finned pilot whales, Atlantic white-sided dolphins, and common dolphins in trawl fisheries to levels approaching the Zero Mortality Rate Goal. The Atlantic Trawl Gear Take Reduction Strategy is available at: http://www.nero.noaa.gov/prot_res/atgtrp/.

3 At the April 2007 meeting, the ATGTRT tabled the discussion of the NOAA General Counsel legal guidance without reaching consensus, with some members questioning the conclusions reached by NOAA General Counsel. The ATGTRT agreed to focus on areas of consensus; specifically the need to identify and implement research and education and outreach initiatives to reduce serious injury and mortality of marine mammals in Atlantic trawl fisheries and ultimately to achieve the MMPA goal of reducing marine takes to Zero Mortality Rate Goal (ZMRG).

4 The Atlantic Trawl Gear Take Reduction Strategy (ATGTRS) identifies informational and research tasks as well as education and outreach needs the ATGTRT believes are necessary to provide the basis for achieving the ultimate MMPA goal of achieving ZMRG. The ATGTRS has identified several potential voluntary measures that can be adopted by certain trawl fishing sectors to potentially reduce the incidental capture of marine mammals. The tasks identified by this ATGTRS are necessary to make reasoned management decisions that could provide the basis for any future take reduction plan should it be determined that a Take Reduction Plan is needed.
6.5.3 Description of Turtle Species with Documented Interactions with the MSB Fisheries

The October 2010 Biological Opinion for the MSB (http://www.nero.noaa.gov/prot_res/section7/NMFS-signedBOS/MSB%20BIOP%202010.pdf) fisheries contains detailed information on sea-turtle interactions with trawl gear in the MSB fisheries, and updated information is provided in Warden (2011a, 2011b). Summary information is provided below.

The primary species likely to be adversely affected by the MSB fishery would be loggerhead sea turtles, as they are the most abundant species occurring in U.S. Atlantic waters. Sea sampling and observer data indicate that fewer interactions occur between fisheries that capture MSB and leatherback, Kemp's ridley, and green sea turtles. The primary area of impact of the directed commercial fishery for MSB on sea turtles is likely bottom otter trawls in waters of the Mid-Atlantic from Virginia through New York, from late spring through fall (peak longfin squid abundance July-October). In New England, interactions with trawl gear may occur in summer through early fall (peak squid abundance August -September), although given the level of effort, the probability of interactions is much lower than in the Mid-Atlantic.

There were 9 observed sea turtle takes in the MSB fishery during 2001-2011 (using top species landed). All sea turtle takes have occurred in bottom otter trawl gear participating in the squid fishery. Based on data collected by observers for the reported sea turtle captures in or retention in MSB trawl gear, the NEFSC estimated loggerhead catch in the MSB trawl fishery between 2000-2004 (Murray 2008) was 62 animals annually. NMFS estimates 2 leatherback, 2 green, and 2 Kemp’s ridley turtles are taken each year based on the very low encounter rates for these species and/or unidentified turtles.

On July 12, 2007, NMFS and U.S. Fish and Wildlife Service (Services) received a petition from Center for Biological Diversity and Turtle Island Restoration Network to list the “North Pacific populations of loggerhead sea turtle” as an endangered species under the ESA. In addition, on November 15, 2007, the Services received a petition from Center for Biological Diversity and Oceana to list the “Western North Atlantic populations of loggerhead sea turtle” as an endangered species under the ESA. NMFS published notices in the Federal Register, concluding that the petitions presented substantial scientific information indicating that the petitioned actions may be warranted (72 FR 64585, November 16, 2007; 73 FR 11849; March 5, 2008). In 2008, a Biological Review Team (BRT) was established to assess the global population structure to determine whether DPSs exist and, if so, the status of each DPS. The BRT identified nine loggerhead DPSs, distributed globally (Conant et al. 2009). On March 16, 2010, the Services announced 12-month findings on the petitions to list the North Pacific populations and the Northwest Atlantic populations of the loggerhead sea turtle as DPSs with endangered status and published a proposed rule to designate nine loggerhead DPSs worldwide, seven as endangered (North Pacific Ocean DPS, South Pacific Ocean DPS, Northwest Atlantic Ocean DPS, Northeast Atlantic Ocean DPS, Mediterranean Sea DPS, North Indian Ocean DPS, and Southeast Indo-Pacific Ocean DPS) and two as threatened (Southwest Indian Ocean DPS and South Atlantic Ocean DPS).

On September 22, 2011, NMFS and U.S. Fish and Wildlife Service issued a final rule (76 FR 58868), determining that the loggerhead sea turtle is composed of nine DPSs (as defined in Conant et al., 2009) that constitute species that may be listed as threatened or endangered under the ESA. Five DPSs were listed as endangered (North Pacific Ocean, South Pacific Ocean, North Indian Ocean, Northeast Atlantic Ocean, and Mediterranean Sea), and four DPSs were listed as threatened (Northwest Atlantic Ocean, South Atlantic Ocean, Southeast Indo-Pacific Ocean, and Southwest Indian Ocean). Note that the Northwest Atlantic Ocean (NWA) DPS and the Southeast Indo-Pacific Ocean DPS were original proposed as endangered. The NWA DPS was determined to be threatened based on review of nesting data
available after the proposed rule was published, information provided in public comments on the proposed rule, and further discussions within the agencies. The two primary factors considered were population abundance and population trend. NMFS and U.S. Fish and Wildlife Service found that an endangered status for the NWA DPS was not warranted given the large size of the nesting population, the overall nesting population remains widespread, the trend for the nesting population appears to be stabilizing, and substantial conservation efforts are underway to address threats.

The September 2011 final rule also noted that critical habitat for the two DPSs occurring within the U.S. (NWA DPS and North Pacific DPS) will be designated in a future rulemaking. Information from the public related to the identification of critical habitat, essential physical or biological features for this species, and other relevant impacts of a critical habitat designation was solicited.

This proposed action only occurs in the Atlantic Ocean. As noted in Conant et al. (2009), the range of the four DPSs occurring in the Atlantic Ocean are as follows: NWA DPS – north of the equator, south of 60° N latitude, and west of 40° W longitude; Northeast Atlantic Ocean (NEA) DPS – north of the equator, south of 60° N latitude, east of 40° W longitude, and west of 5° 36’ W longitude; South Atlantic DPS – south of the equator, north of 60° S latitude, west of 20° E longitude, and east of 60° W longitude; Mediterranean DPS – the Mediterranean Sea east of 5° 36’ W longitude. These boundaries were determined based on oceanographic features, loggerhead sightings, thermal tolerance, fishery data, and information on loggerhead distribution from satellite telemetry and flipper tagging studies. Sea turtles from the NEA DPS are not expected to be present over the North American continental shelf in U.S. coastal waters, where the proposed action occurs (P. Dutton, NMFS, personal communication, 2011). Previous literature (Bowen et al. 2004) has suggested that there is the potential, albeit small, for some juveniles from the Mediterranean DPS to be present in U.S. Atlantic coastal foraging grounds. These data should be interpreted with caution however, as they may be representing a shared common haplotype and lack of representative sampling at Eastern Atlantic rookeries. Given that updated, more refined analyses are ongoing and the occurrence of Mediterranean DPS juveniles in U.S. coastal waters is rare and uncertain, if even occurring at all, for the purposes of this assessment we are making the determination that the Mediterranean DPS is not likely to be present in the action area. Sea turtles of the South Atlantic DPS do not inhabit the action area of this subject fishery (Conant et al. 2009). As such, the remainder of this assessment will only focus on the NWA DPS of loggerhead sea turtles, listed as threatened.

6.5.4 Birds

Northern Gannet (Morus bassanus)

The Northern gannet is a migratory seabird federally protected in the U.S. and Canada. Gannets spend the boreal summer along coastal Canada and the winter along the U.S. East Coast continental shelf waters. North American breeding colonies exist at 6 main sites in the Gulf of St. Lawrence and along the Atlantic coast of Newfoundland. During the nesting season, March – November, birds forage throughout the North Atlantic from the Bay of Fundy, off the coasts of Newfoundland, Labrador and Greenland and throughout the Gulf of St. Lawrence. Dispersal from breeding sites begins in September, where gannets migrate south along the Northeast Atlantic coast and are considered common winter residents off most
Northeast coastal states. Primary prey of the Northern gannet include herring, mackerel and squids. North American breeding population has been increasing since the early 1970’s and in 2000 the population was estimated at 144,596 individuals. Northern gannets were not listed as a species of conservation concern by the U.S. Fish and Wildlife Service in 2008.

Northern gannet Fishery Interactions:

Longfin squid: For 2004 to 2008, one Northern Gannet take was observed in March of 2004.

Atlantic mackerel: For 2004 to 2008 a total of 62 Northern Gannets have been observed (2004, n = 17; 2005, n = 1; 2006, n = 2; 2007, n = 30; 2008, n = 12).

Butterfish: Given recent restrictions on butterfish landings it is difficult to even define a directed butterfish fishery – landings are generally incidental to other fishing.

6.5.5 Atlantic Sturgeon

In 2012 NOAA’s Fisheries Service announced a final decision to list five distinct population segments (DPS) of Atlantic sturgeon under the Endangered Species Act. The Chesapeake Bay, New York Bight, Carolina, and South Atlantic DPSs of Atlantic sturgeon were listed as endangered, while the Gulf of Maine DPS was listed as threatened. Atlantic sturgeon from any of the five DPSs could occur in areas where MSB fisheries operate, and the species has been captured in gear targeting longfin squid (Stein et al. 2004a, ASMFC 2007). Therefore, this Environmental Assessment includes background information on Atlantic sturgeon in this section and considers the anticipated effects of the action on Atlantic sturgeon in Section 7 of this Environmental Assessment.

Atlantic sturgeon is an anadromous species that spawns in relatively low salinity, river environments, but spends most of its life in the marine and estuarine environments from Labrador, Canada to the Saint Johns River, Florida. There are no total population size estimates for any of the 5 Atlantic sturgeon DPSs at this time. However, there are two estimates of spawning adults per year for two river systems (e.g., 863 spawning adults for the Hudson River, and 343 spawning adults per year for the Altamaha River). The Altamaha estimate represent only a fraction of the total population size of this subpopulation as Atlantic sturgeon do not spawn every year. Additionally, neither of these estimates include subadults or early life stages. Detailed life history information may be found in the 2007 Atlantic Sturgeon Status Review, available at: http://sero.nmfs.noaa.gov/pr/esa/Sturgeon/Atl%20Sturgeon/atlanticsturgeon2007.pdf.

Atlantic sturgeon are known to be captured in sink gillnet, drift gillnet, and otter trawl gear (Stein et al. 2004a, ASMFC TC 2007). Of these gear types, sink gillnet gear poses the greatest known risk of mortality for bycaught sturgeon (ASMFC TC 2007). Sturgeon deaths are rarely reported in the otter trawl observer dataset (ASMFC TC 2007). However, the level of mortality after release from the gear is unknown. For the years 2006 through 2010, an average of 775 Atlantic sturgeon encounters with small mesh otter trawl occurred in all areas (759 in the 600 series of statistical areas).

In an updated analysis, NEFSC was able to use data from the Northeast Fishery Observer Program database to provide updated estimates for the 2006 to 2010 timeframe. For reference, estimated total
annual takes for all gear types (otter trawl and sink gillnet) ranged from 1536 to 3221 (average 2,215). For small-mesh otter trawls, total annual takes from 2006 to 2010 ranged from 394 to 1546 (average 775). Estimated annual mortalities for all gear types ranged from 37 to 376 sturgeon.

It should be noted that other fisheries, such as the small-mesh multispecies (whiting) fishery, utilize the small-mesh otter trawl gear and fish in the same area where MSB species occur. Accordingly, it is likely that actual encounters with Atlantic sturgeon by the MSB fisheries are lower than the totals for the gear type. However, because the Northeast Fishery Observer Program data available for this analysis did not identify the species targeted, a more precise evaluation of encounters in only the MSB fisheries cannot be specified at this time.

A comparison of the location of the MSB fisheries (see Section 6.1) and with the known-preferred habitat of Atlantic sturgeon (shallow inshore areas, primarily less than 50 m), suggests that the portion of 2006-2010 small-mesh otter trawl interactions attributable to MSB fisheries could likely have occurred in the summer/fall inshore longfin squid fishery, which occurs nearshore in waters less than 40 fathoms. The longfin squid quota is allocated in trimesters (43% for Trimester 1; 17% for Trimester 2; 40% for Trimester 3), so roughly half of the quota is available during the summer and fall period. The nearshore effort in the summer and fall longfin squid fishery overlaps with the water depths in which most observed sturgeon encounters occur. This is supported by the Stein et al. (2004a) analysis, which showed sturgeon encounters with the longfin squid and butterfish fisheries during the period from 1989-2000, but showed no encounters with \textit{Illex} squid and mackerel fisheries.

Atlantic sturgeon interactions with small-mesh otter trawl are distributed throughout the year. On average, the most estimated small-mesh otter trawl encounters with Atlantic sturgeon in the 600 series of statistical areas occur during Quarter 2 (April through June), and the fewest occur during Quarter 3 (July – September). However, the contribution of each quarter to total estimated encounters differs from year to year.

Compared to gillnet gear, small-mesh otter trawl gear accounts for relatively few sturgeon mortalities. The number of small-mesh otter trawl takes resulting in mortality remained at less than 5% of total estimated encounters for the entire period, with estimated annual mortalities ranging from 4 to 90 (total mortalities for all gear types ranged from 37 to 376). Between 2006 and 2010, there were no estimated Atlantic sturgeon mortalities in small-mesh otter trawl gear during Quarters 2 and 3, and an average of 11 estimated mortalities in Quarters 1. Estimated Quarter 4 mortalities in small-mesh otter trawl gear only occurred 2006 (61 total estimated mortalities). All mortalities in small-mesh otter trawl gear occurred in the 600 series of statistical areas. It is important to note that the information provided on mortality rates may be an underestimate as the rate of post-release mortality for those reportedly released alive is unknown. An analysis of observer data has suggested that the proportions of these mortalities by DPS are approximately: 11% Gulf of Maine, 49% New York Bight, 14% Chesapeake Bay, 4% Carolina, 20% South Atlantic, and 2% Canada (which are not listed). NMFS is undertaking a biological opinion to determine what fishery restrictions might be necessary for Council fisheries. The Council has established a Sturgeon Advisory Panel to help guide its efforts and will consider appropriate measures once the biological opinion is finalized.

NMFS has reinitiated formal consultation regarding Atlantic sturgeon and the MSB fisheries but also found that the continued operation of these fisheries during the reinitiation period is not likely to jeopardize the continued existence of any Atlantic sturgeon DPS. This is based on the NMFS determination that the number of interactions with Atlantic sturgeon that may occur during this period is
low and will only occur for a short period of time. Thus, this is not expected to increase the risk that the fisheries and associated research are jeopardizing any Atlantic sturgeon DPS.

6.5.6 Description of Candidate Species for Listing Under the ESA

Cusk

Cusk are not expected to be impacted by actions in this amendment, but more information may be found at: http://www.nmfs.noaa.gov/pr/species/fish/cusk.htm.

Alewife and Blueback Herring

On August 5, the Natural Resources Defense Council submitted a petition to NOAA requesting that the agency consider river herrings, alewife and blueback herring, for listing. Within 12 months of receipt of this petition, NOAA is required to make a determination of whether alewife and blueback herring should be listed as endangered or threatened, or not at all.

Both alewife and blueback herring are found in coastal waters and rivers from Canada to North Carolina, although blueback herring’s range extends farther south to Florida. Both species are managed by the Atlantic States Marine Fisheries Commission.

Blueback herring and alewife are both now considered candidate species under the Endangered Species Act. NOAA has determined that a petition to list alewife and blueback herring, collectively referred to as river herring, under the Endangered Species Act presents enough scientific and commercial information to merit further review. As a result, the agency will conduct a formal review of river herring population status and trends. A decision regarding whether listing is warranted is due on August 5, 2012.

The Atlantic States Marine Fisheries Commission has been conducting a stock assessment for river herring since 2008, covering over 50 river specific stocks throughout the species U.S. range. This represents a significant effort on behalf of the ASMFC and the coastal states from Maine to Florida. NOAA recognizes this extensive effort to compile the most current information on the status of these stocks throughout their range in the United States and intends to work cooperatively with the ASMFC to utilize this information in the ongoing review of the status of these two keystone species.

NOAA will also consider information contained in the petition, published literature, and other information about the historic and current range of river herring, their physical and biological habitat requirements, population status and trends, and threats. If NOAA determines that a listing is appropriate, the agency will publish a proposed rule and take public comment before publishing a final decision. However, if NOAA determines that that listing these species is not appropriate, the process ends.
6.6 Fishery, Port, and Community Description (Human Communities)

Detailed information about landings, revenues, gear, permits, area fished, recreational catch, etc. for mackerel, *Illex*, butterfish, and longfin squid is described in section 6.6. Detailed information on the Atlantic herring fishery is available in Amendment 5’s DEIS, available here: http://www.nefmc.org/herring/index.html. Basic community profiles for all Mid-Atlantic and New-England Ports are available at: http://www.nefsc.noaa.gov/read/socialsci/community_profiles/. These profiles generally contain landings information through 2006. The table below provides an update for the importance of mackerel, longfin squid, and Atlantic herring (species most impacted by this Amendment) for all ports where cumulative ex-vessel revenues 2007-2010 totaled more than $50,000 and the proportion of revenues from mackerel, longfin squid, and Atlantic herring combined accounted for at least 5% of all revenues. New Bedford is also included because even though the percentage is small, the value of Atl Herring, Atl Mackerel, and longfin squid is still relatively large (the value of scallops dominates in New Bedford). This identifies the ports most dependent on the fisheries that may be impacted by the actions considered in this document.
Table 24. MSB Ports

<table>
<thead>
<tr>
<th>PORTNAME</th>
<th>Total Ex-Vessel Value of All Landings in Port (2007-2010)</th>
<th>Percent of Value from Atl Herring</th>
<th>Percent of Value from Mackerel</th>
<th>Percent of Value from Loligo</th>
<th>Percent of Value from Atl Herring, Mackerel, Loligo Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROSPECT, MAINE</td>
<td>$330,577</td>
<td>92%</td>
<td>0%</td>
<td>0%</td>
<td>92%</td>
</tr>
<tr>
<td>NORTH KINGSTOWN, RHODE ISLAND</td>
<td>$42,493,380</td>
<td>4%</td>
<td>14%</td>
<td>27%</td>
<td>45%</td>
</tr>
<tr>
<td>ROCKLAND, MAINE</td>
<td>$35,664,669</td>
<td>36%</td>
<td>0%</td>
<td>0%</td>
<td>36%</td>
</tr>
<tr>
<td>POINT JUDITH, RHODE ISLAND</td>
<td>$137,980,732</td>
<td>1%</td>
<td>0%</td>
<td>22%</td>
<td>24%</td>
</tr>
<tr>
<td>HAMPTON BAYS, NEW YORK</td>
<td>$20,374,542</td>
<td>0%</td>
<td>0%</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>OTHER BARNSTABLE, MASSACHUSETTS</td>
<td>$6,490,882</td>
<td>0%</td>
<td>0%</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>SHINNECOCK, NEW YORK</td>
<td>$2,591,042</td>
<td>0%</td>
<td>0%</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>FALL RIVER, MASSACHUSETTS</td>
<td>$13,294,843</td>
<td>9%</td>
<td>10%</td>
<td>0%</td>
<td>19%</td>
</tr>
<tr>
<td>MONTAUK, NEW YORK</td>
<td>$64,864,533</td>
<td>0%</td>
<td>0%</td>
<td>19%</td>
<td>19%</td>
</tr>
<tr>
<td>PROSPECT HARBOR, MAINE</td>
<td>$9,405,037</td>
<td>18%</td>
<td>0%</td>
<td>0%</td>
<td>18%</td>
</tr>
<tr>
<td>NEW YORK CITY, NEW YORK</td>
<td>$9,711,180</td>
<td>0%</td>
<td>1%</td>
<td>17%</td>
<td>17%</td>
</tr>
<tr>
<td>GREENPORT, NEW YORK</td>
<td>$1,538,865</td>
<td>0%</td>
<td>0%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>GLOUCESTER, MASSACHUSETTS</td>
<td>$207,497,454</td>
<td>12%</td>
<td>3%</td>
<td>0%</td>
<td>15%</td>
</tr>
<tr>
<td>NIACTIC, CONNECTICUT</td>
<td>$1,006,529</td>
<td>0%</td>
<td>1%</td>
<td>13%</td>
<td>14%</td>
</tr>
<tr>
<td>PORTLAND, MAINE</td>
<td>$84,423,991</td>
<td>14%</td>
<td>0%</td>
<td>0%</td>
<td>14%</td>
</tr>
<tr>
<td>WOODS HOLE, MASSACHUSETTS</td>
<td>$2,756,724</td>
<td>0%</td>
<td>0%</td>
<td>12%</td>
<td>12%</td>
</tr>
<tr>
<td>POINT LOOKOUT, NEW YORK</td>
<td>$10,002,397</td>
<td>0%</td>
<td>0%</td>
<td>11%</td>
<td>11%</td>
</tr>
<tr>
<td>EAST HAVEN, CONNECTICUT</td>
<td>$2,562,075</td>
<td>0%</td>
<td>0%</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>FREEPORT, NEW YORK</td>
<td>$1,637,244</td>
<td>0%</td>
<td>0%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>NEWPORT, RHODE ISLAND</td>
<td>$33,081,171</td>
<td>2%</td>
<td>0%</td>
<td>5%</td>
<td>7%</td>
</tr>
<tr>
<td>BELFORD, NEW JERSEY</td>
<td>$10,984,338</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>CAPE MAY, NEW JERSE</td>
<td>$266,247,723</td>
<td>1%</td>
<td>2%</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>OTHER NEWPORT, RHODE ISLAND</td>
<td>$794,742</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>HYANNISPORT, MASSACHUSETTS</td>
<td>$8,718,830</td>
<td>0%</td>
<td>0%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>NEW BEDFORD, MASSACHUSETTS</td>
<td>$1,057,316,970</td>
<td>1%</td>
<td>1%</td>
<td>0%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Source: NMFS Dealer Weighout Database Unpublished Data

The Council employed a new procedure for gathering information from its Squid-Mackerel-Butterfish Advisory Panel during the 2012 specifications setting process. The Advisory Panel created a “Fishery Performance Report” for each species based on the advisors’ personal and professional industry experiences as well as reactions to an “informational document” for each species created by Council staff. The Fishery Performance Reports, while not reviewed by NMFS technical staff in the same fashion as this environmental assessment, may be of additional interest to the reader and may be found here: http://www.mafmc.org/meeting_materials/SSC/2011-05/SSC_2011-05.htm. The staff informational document, while also not reviewed and containing some preliminary information, was constructed using the same basic analytical techniques as this document and also may be of interest to readers looking for additional descriptive fishery information (available via same link as above).
6.7 Fishery and Socioeconomic Description

6.7.1 Atlantic mackerel (mackerel)

Historical Commercial Fishery

The modern northwest mackerel fishery began with the arrival of the European distant-water fleets in the early 1960's. Total international commercial landings (Northwest Atlantic Fisheries Organization Subareas 2-6,) peaked at 437,000 mt in 1973 and then declined sharply to 77,000 by 1977 (Overholtz 1989). The MSA established control of the portion of the mackerel fishery occurring in U.S. waters (Northwest Atlantic Fisheries Organization Subareas 5-6) under the auspices of the Council. Reported foreign landings in U.S. waters declined from an unregulated level of 385,000 mt in 1972 to less than 400 mt from 1978-1980 under the MSFCMA (the foreign mackerel fishery was restricted by NOAA Foreign Fishing regulations to certain areas or "windows." Under the MSB FMP foreign mackerel catches were permitted to increase gradually to 15,000 mt in 1984 and then to a peak of almost 43,000 mt in 1988 before being phased out again (Figure 42).

![Mackerel Landings in U.S. Waters](image)

Figure 42. Historical Alt. Mackerel Landings in the U.S. EEZ.

U.S. commercial landings of mackerel increased steadily from roughly 3000 mt in the early 1980s to greater than 31,000 mt by 1990. U.S. mackerel landings declined to relatively low levels 1992-2000 before increasing in the early 2000's. The most recent years have seen a significant drop-off in harvest. Price (nominal) has fluctuated without trend since 1982 and averaged $323/mt in 2010.

Analysis of NMFS weighout data is used to chart annual estimates for U.S. mackerel landings (mt), ex-vessel value ($), and nominal (not inflation adjusted) prices 1982-2010 ($/mt) in the figures below.
Figure 43. U.S. Mackerel Landings.
Source: Unpublished NMFS dealer reports

Figure 44. U.S. Mackerel Ex-vessel Revenues.
Source: Unpublished NMFS dealer reports
 SPECIFICATION PERFORMANCE

The principle measure used to manage mackerel is monitoring via dealer weighout data that is submitted weekly. The dealer data triggers in-season management actions that institute relatively low trip limits when 90% of the DAH is landed. Mandatory reporting for mackerel was fully instituted in 1997 so specification performance since 1997 is most relevant. Table 25 lists the performance of the mackerel fishery (commercial and recreational together) compared to its DAH. There have been no quota overages.
Table 25. Mackerel DAH Performance. (mt)

<table>
<thead>
<tr>
<th>Year</th>
<th>Harvest (mt) (Commercial and Recreational)</th>
<th>Quota (mt)</th>
<th>Percent of Quota Landed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>17,140</td>
<td>90,000</td>
<td>19%</td>
</tr>
<tr>
<td>1998</td>
<td>15,215</td>
<td>80,000</td>
<td>19%</td>
</tr>
<tr>
<td>1999</td>
<td>13,366</td>
<td>75,000</td>
<td>18%</td>
</tr>
<tr>
<td>2000</td>
<td>7,097</td>
<td>75,000</td>
<td>9%</td>
</tr>
<tr>
<td>2001</td>
<td>13,876</td>
<td>85,000</td>
<td>16%</td>
</tr>
<tr>
<td>2002</td>
<td>27,824</td>
<td>85,000</td>
<td>33%</td>
</tr>
<tr>
<td>2003</td>
<td>35,068</td>
<td>175,000</td>
<td>20%</td>
</tr>
<tr>
<td>2004</td>
<td>55,520</td>
<td>170,000</td>
<td>33%</td>
</tr>
<tr>
<td>2005</td>
<td>43,220</td>
<td>115,000</td>
<td>38%</td>
</tr>
<tr>
<td>2006</td>
<td>58,493</td>
<td>115,000</td>
<td>51%</td>
</tr>
<tr>
<td>2007</td>
<td>26,431</td>
<td>115,000</td>
<td>23%</td>
</tr>
<tr>
<td>2008</td>
<td>22,439</td>
<td>115,000</td>
<td>20%</td>
</tr>
<tr>
<td>2009</td>
<td>23,382</td>
<td>115,000</td>
<td>20%</td>
</tr>
<tr>
<td>2010</td>
<td>10,669</td>
<td>115,000</td>
<td>9%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Commercial Fishery and Community Analysis

The following tables describe, for mackerel in 2010, the total landings, value, numbers of vessels making landings, numbers of trips landing mackerel, price per metric ton (Table 26), landings by state (Table 27), landings by month (Table 28), landings by gear (Table 29), numbers of permitted and active vessels by state (Table 30), numbers of uncanceled permits over time (Figure 46), numbers of permitted and active dealers by state (Table 31), and landings by NMFS federal permit category (Table 32). Previous Specification EA’s have included port information but because of confidentiality concerns such tables are not able to include much relevant information and have been deleted.

Table 26. 2010 Total Mackerel Landings, Value, Active Vessels, Trips, and Price.

<table>
<thead>
<tr>
<th>Category</th>
<th>Landings (mt)</th>
<th>Value ($)</th>
<th>Vessels</th>
<th>Trips</th>
<th>$/mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mackerel</td>
<td>9,891</td>
<td>3,195,962</td>
<td>74</td>
<td>588</td>
<td>$323</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports
Table 27. Mackerel Landings (mt) by State in 2010.

<table>
<thead>
<tr>
<th>State</th>
<th>Landings (mt)</th>
<th>Pct_of_Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massachusetts</td>
<td>5,514</td>
<td>56%</td>
</tr>
<tr>
<td>New Jersey</td>
<td>2,128</td>
<td>22%</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1,976</td>
<td>20%</td>
</tr>
<tr>
<td>Maine</td>
<td>161</td>
<td>2%</td>
</tr>
<tr>
<td>New York</td>
<td>51</td>
<td>1%</td>
</tr>
<tr>
<td>Connecticut</td>
<td>31</td>
<td>0%</td>
</tr>
<tr>
<td>North Carolina</td>
<td>21</td>
<td>0%</td>
</tr>
<tr>
<td>Virginia</td>
<td>9</td>
<td>0%</td>
</tr>
<tr>
<td>Maryland</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>9,891</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Table 28. Mackerel Landings (mt) by Month in 2010.

<table>
<thead>
<tr>
<th>MONTH</th>
<th>Landings (mt)</th>
<th>Pct of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>5,635</td>
<td>57%</td>
</tr>
<tr>
<td>February</td>
<td>2,655</td>
<td>27%</td>
</tr>
<tr>
<td>March</td>
<td>1,188</td>
<td>12%</td>
</tr>
<tr>
<td>April</td>
<td>165</td>
<td>2%</td>
</tr>
<tr>
<td>May</td>
<td>105</td>
<td>1%</td>
</tr>
<tr>
<td>June</td>
<td>57</td>
<td>1%</td>
</tr>
<tr>
<td>July</td>
<td>10</td>
<td>0%</td>
</tr>
<tr>
<td>August</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>September</td>
<td>6</td>
<td>0%</td>
</tr>
<tr>
<td>October</td>
<td>54</td>
<td>1%</td>
</tr>
<tr>
<td>November</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>December</td>
<td>10</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>9,891</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports
Table 29. Mackerel Landings (mt) by Gear Category in 2010.

<table>
<thead>
<tr>
<th>GEAR_NAME</th>
<th>Landings (mt)</th>
<th>Pct of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAWL, OTTER, MIDWATER PAIRED</td>
<td>4,149</td>
<td>42%</td>
</tr>
<tr>
<td>TRAWL, OTTER, BOTTOM, FISH</td>
<td>2,744</td>
<td>28%</td>
</tr>
<tr>
<td>TRAWL, OTTER, MIDWATER</td>
<td>1,992</td>
<td>20%</td>
</tr>
<tr>
<td>Other</td>
<td>1,006</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>9,891</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Table 30. Mackerel Vessel Permit Holders and Active Permit Holders in 2010 by Homeport State (HPST).

<table>
<thead>
<tr>
<th>HPST</th>
<th>Permitted Vessels</th>
<th>Active Vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>891</td>
<td>52</td>
</tr>
<tr>
<td>NJ</td>
<td>294</td>
<td>37</td>
</tr>
<tr>
<td>ME</td>
<td>253</td>
<td>5</td>
</tr>
<tr>
<td>NY</td>
<td>230</td>
<td>34</td>
</tr>
<tr>
<td>RI</td>
<td>142</td>
<td>41</td>
</tr>
<tr>
<td>NH</td>
<td>95</td>
<td>11</td>
</tr>
<tr>
<td>VA</td>
<td>94</td>
<td>6</td>
</tr>
<tr>
<td>NC</td>
<td>91</td>
<td>10</td>
</tr>
<tr>
<td>CT</td>
<td>37</td>
<td>6</td>
</tr>
<tr>
<td>MD</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>2201</td>
<td>206</td>
</tr>
</tbody>
</table>

Source: unpublished NMFS permit and dealer data.
Figure 46. Uncanceled Mackerel Permits Per Year

![Uncanceled Mackerel Permits Per Year Graph]

Source: Unpublished NMFS dealer reports

Table 31. Mackerel, Squid, and Butterfish Dealer Permit Holders and Those that Made Mackerel Purchases in 2010 by State.

<table>
<thead>
<tr>
<th>State</th>
<th>Permitted Dealers</th>
<th>Active Dealers</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>109</td>
<td>27</td>
</tr>
<tr>
<td>NY</td>
<td>87</td>
<td>17</td>
</tr>
<tr>
<td>RI</td>
<td>39</td>
<td>12</td>
</tr>
<tr>
<td>NC</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>ME</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>VA</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>NJ</td>
<td>39</td>
<td>4</td>
</tr>
<tr>
<td>NH</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>CT</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>MD</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>366</td>
<td>88</td>
</tr>
</tbody>
</table>

Source: unpublished NMFS permit and dealer reports.
Table 32. Mackerel Landings by Permit Category for the Period 2001-2010.

<table>
<thead>
<tr>
<th>Year</th>
<th>Atlantic Mackerel Permit</th>
<th>Party/Charter</th>
<th>No Permit/Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mt</td>
<td>%</td>
<td>mt</td>
<td>%</td>
</tr>
<tr>
<td>2001</td>
<td>12,063</td>
<td>98%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2002</td>
<td>25,887</td>
<td>98%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2003</td>
<td>33,969</td>
<td>99%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2004</td>
<td>56,100</td>
<td>99%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2005</td>
<td>42,122</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2006</td>
<td>56,705</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2007</td>
<td>24,898</td>
<td>97%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2008</td>
<td>21,312</td>
<td>98%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2009</td>
<td>22,508</td>
<td>99%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2010</td>
<td>9,769</td>
<td>99%</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

Source: unpublished NMFS permit and dealer reports.

Description of Areas Fished in VTR Reports

Vessel Trip Reports (VTRs) represent captains' estimates of kept weight of fish/squid. VTR reports, which are a subset of the landings data, provide the approximate location of kept fish/squid. VTR reports for mackerel in 2010 by NMFS three digit statistical area (see Figure 47) are given in Table 33.

Table 33. Statistical Areas from Which 1% or More of Mackerel Were Kept in 2010 According to VTR Reports.

<table>
<thead>
<tr>
<th>Stat Area</th>
<th>Landings (mt)</th>
<th>Percentage from Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>612</td>
<td>5759.73</td>
<td>59%</td>
</tr>
<tr>
<td>622</td>
<td>1260.21</td>
<td>13%</td>
</tr>
<tr>
<td>621</td>
<td>1130.75</td>
<td>12%</td>
</tr>
<tr>
<td>615</td>
<td>399.21</td>
<td>4%</td>
</tr>
<tr>
<td>616</td>
<td>383.22</td>
<td>4%</td>
</tr>
<tr>
<td>613</td>
<td>292.74</td>
<td>3%</td>
</tr>
<tr>
<td>625</td>
<td>118.25</td>
<td>1%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS VTR reports.
Figure 47. NMFS Statistical Areas
Current Market Overview for Mackerel

The Management Plan for mackerel, squid, and butterfish Fisheries requires that specific evaluations be made in the specification setting process before harvest rights are granted to foreign interests in the form of foreign fishing or joint venture allocations. The Council has concluded in recent years that conditions in the world market for mackerel have changed only slightly from year to year.

World Production and Prices

According to the U.N. Food and Agriculture Organization, world landings of mackerel dramatically increased in the 1960s, peaked at 1,092,759 mt in 1975, and have been between 550,000 mt and 850,000 mt since 1977. (Figure 48) (http://www.fao.org/fishery/statistics/). Prices for imported and exported U.S. mackerel, likely good indications of prices on the world market, averaged $1,118 per mt in 2010 for exports and 3,204 per mt in 2010 for imports (NMFS 2010; http://www.st.nmfs.noaa.gov/st1/trade/documents/TRADE2010.pdf).

Figure 48. World production of Mackerel, 1950-2008 based on U.N. Food and Agriculture Organization (2010).
Future Supplies of and Demand for Mackerel

Mackerel produced in the U.S. is a substitute for European produced mackerel. The quantity of European mackerel supplied to the market declined in 2006 and 2007 [Chetrick 2006: http://www.fas.usda.gov/info/fasworldwide/2006/10-2006/EUMackerel.pdf]. As a result, the quantity of U.S. mackerel demanded increased. In addition to the price of European mackerel, there are many factors which affect the worldwide demand for mackerel, including income, tastes, and the price of substitute goods. There has also been controversy in 2011 regarding high levels of mackerel fishing by Iceland and the Faroe Islands in areas that have not recently produced mackerel.

U.S. Exports of Mackerel

In 2010, U.S. exports of all mackerel products (fresh, frozen, and prepared/preserved) totaled 10,340 mt, valued at $11.6 million.

Recreational Fishery

Mackerel are seasonally important to the recreational fisheries of the Mid-Atlantic and New England regions. They may be available to recreational anglers in the Mid-Atlantic primarily during the spring migration although this fishery has not been as robust in recent years. Historically, mackerel first appear off Virginia in March and gradually move northward. Christensen et al. 1979 found mackerel to be available to the recreational fishery from Delaware to New York for about three weeks (generally from early April to early May). As a result, the annual recreational catch of mackerel appears to be sensitive to changes in their migration and subsequent distribution pattern (Overholtz et al. 1989).

Recreational landings of mackerel for the last 10 years (since 2001), as estimated from the NMFS Marine Recreational Fishery Statistics Survey, are given in Table 34 and Table 35. In recent years, recreational mackerel harvest has varied from roughly 1,633 mt in 1997 to 530 in 2004. The highest landings occur from Massachusetts to Maine. Most mackerel are taken from boats. Also, over the same time period approximately 10% of all mackerel caught (by number) were released.

Estimates for mackerel recreational harvest are relatively uncertain due to low encounter rates. From 2001-2010 annual estimates had an average Proportional Standard Error (PSE) of 16%. Based on how PSEs are calculated, this means that on average we were approximately 95% sure that the real number for weight of mackerel harvest was within 32% (+ or -) of our estimate (best was ± 20%, worst was ± 47%). Breakouts by state or mode would have greater uncertainty. In addition, the uncertainty is even higher in reality because of sampling problems with Marine Recreational Fisheries Statistical Survey. The Marine Recreational Information Program (MRIP) is trying to figure out by just how much and to implement improved procedures – see countmyfish.noaa.gov. MRIP will be generating new less-biased estimates soon but they were not available at the time this document was developed.
Table 34. Recreational Harvest (rounded to nearest metric ton) of Mackerel by State, 2001-2010.

<table>
<thead>
<tr>
<th>Year</th>
<th>ME</th>
<th>MD</th>
<th>MA</th>
<th>NH</th>
<th>NJ</th>
<th>NY</th>
<th>NC</th>
<th>RI</th>
<th>VA</th>
<th>DE</th>
<th>CT</th>
<th>Annual Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>287</td>
<td>22</td>
<td>885</td>
<td>224</td>
<td>78</td>
<td>18</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>1,536</td>
</tr>
<tr>
<td>2002</td>
<td>387</td>
<td>2</td>
<td>728</td>
<td>65</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1,294</td>
</tr>
<tr>
<td>2003</td>
<td>123</td>
<td>0</td>
<td>510</td>
<td>79</td>
<td>29</td>
<td>19</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>770</td>
</tr>
<tr>
<td>2004</td>
<td>207</td>
<td>0</td>
<td>291</td>
<td>27</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>530</td>
</tr>
<tr>
<td>2005</td>
<td>181</td>
<td>0</td>
<td>768</td>
<td>74</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,033</td>
</tr>
<tr>
<td>2006</td>
<td>109</td>
<td>0</td>
<td>1,488</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1,633</td>
</tr>
<tr>
<td>2007</td>
<td>280</td>
<td>0</td>
<td>561</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>884</td>
</tr>
<tr>
<td>2008</td>
<td>148</td>
<td>0</td>
<td>413</td>
<td>129</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>691</td>
</tr>
<tr>
<td>2009</td>
<td>320</td>
<td>0</td>
<td>155</td>
<td>272</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>747</td>
</tr>
<tr>
<td>2010</td>
<td>250</td>
<td>0</td>
<td>465</td>
<td>62</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>778</td>
</tr>
</tbody>
</table>

Source: Personal communication from the National Marine Fisheries Service, Fisheries Statistics Division.

Table 35. Recreational Harvest (rounded to nearest metric ton) of Mackerel by Mode and Total, 2000-2010.

<table>
<thead>
<tr>
<th>Year</th>
<th>PARTY-CHARTER</th>
<th>PRIVATE or RENTAL</th>
<th>SHORE</th>
<th>Annual Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>164</td>
<td>1,290</td>
<td>82</td>
<td>1,536</td>
</tr>
<tr>
<td>2002</td>
<td>23</td>
<td>1,172</td>
<td>98</td>
<td>1,294</td>
</tr>
<tr>
<td>2003</td>
<td>53</td>
<td>594</td>
<td>123</td>
<td>770</td>
</tr>
<tr>
<td>2004</td>
<td>21</td>
<td>395</td>
<td>115</td>
<td>530</td>
</tr>
<tr>
<td>2005</td>
<td>25</td>
<td>994</td>
<td>14</td>
<td>1,033</td>
</tr>
<tr>
<td>2006</td>
<td>11</td>
<td>1,560</td>
<td>62</td>
<td>1,633</td>
</tr>
<tr>
<td>2007</td>
<td>20</td>
<td>801</td>
<td>63</td>
<td>884</td>
</tr>
<tr>
<td>2008</td>
<td>9</td>
<td>646</td>
<td>35</td>
<td>691</td>
</tr>
<tr>
<td>2009</td>
<td>171</td>
<td>435</td>
<td>141</td>
<td>747</td>
</tr>
<tr>
<td>2010</td>
<td>26</td>
<td>610</td>
<td>142</td>
<td>778</td>
</tr>
</tbody>
</table>

Source: Personal communication from the National Marine Fisheries Service, Fisheries Statistics Division.
6.7.2 *Illex illecebrosus*

Historical Commercial Fishery

Foreign fishing fleets became interested in exploitation of the neritic squid stocks of the Northwest Atlantic Ocean when the Union of Soviet Socialist Republics first reported squid catches in the mid-1960's. By 1972, foreign fishing fleets reported landing 17,200 thousand mt of *Illex* from Cape Hatteras to the Gulf of Maine (Figure 49). During the period 1973-1982, foreign landings of *Illex* in U.S. waters averaged about 18,000 mt, while U.S. fisherman averaged only slightly more than 1,100 mt per year. Foreign landings from 1983-1986 were part of the U.S. joint venture fishery which ended in 1987 (NMFS 1994a). The domestic fishery for *Illex* increased fitfully during the 1980's as foreign fishing was eliminated in the U.S. EEZ. *Illex* landings are heavily influenced by year-to-year availability and world-market activity. Price (nominal) has increased fitfully since 1982 and averaged $525/mt in 2010.

![Illex Landings in U.S. Waters](image)

Figure 49. Historical *Illex* Landings in the U.S. EEZ.

Analysis of NMFS dealer weighout data 1982-2010 is used to chart annual averages for U.S. landings (mt), ex-vessel value ($), and nominal prices ($/mt) in the figures below.
Figure 50. U.S. Illex Landings.
Source: Unpublished NMFS dealer reports

Figure 51. U.S. Illex Ex-vessel Revenues.
Source: Unpublished NMFS dealer reports
Specification Performance

The principle measure used to manage Illex is monitoring via dealer weighout data that is submitted weekly. The dealer data triggers in-season management actions that institute relatively low trip limits when 95% of the DAH is landed. Mandatory reporting for Illex was fully instituted in 1997 so specification performance since 1997 is most relevant. Table 36 lists the performance of the Illex fishery compared to its DAH. There was an overage in 1 of the last 10 years (a 9% overage in 2004) and 2 of the last 12 years (the 9% overage and a 24% overage in 1998). NMFS is continually augmenting its projecting procedures so presumably future overages would be even less likely.
Table 36. *Illex* DAH Performance. (mt)

<table>
<thead>
<tr>
<th>Year</th>
<th>Landings</th>
<th>Quota</th>
<th>Percent of Quota Landed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>13,629</td>
<td>19,000</td>
<td>72%</td>
</tr>
<tr>
<td>1998</td>
<td>23,597</td>
<td>19,000</td>
<td>124%</td>
</tr>
<tr>
<td>1999</td>
<td>7,388</td>
<td>19,000</td>
<td>39%</td>
</tr>
<tr>
<td>2000</td>
<td>9,011</td>
<td>24,000</td>
<td>38%</td>
</tr>
<tr>
<td>2001</td>
<td>4,009</td>
<td>24,000</td>
<td>17%</td>
</tr>
<tr>
<td>2002</td>
<td>2,750</td>
<td>24,000</td>
<td>11%</td>
</tr>
<tr>
<td>2003</td>
<td>6,389</td>
<td>24,000</td>
<td>27%</td>
</tr>
<tr>
<td>2004</td>
<td>26,097</td>
<td>24,000</td>
<td>109%</td>
</tr>
<tr>
<td>2005</td>
<td>12,011</td>
<td>24,000</td>
<td>50%</td>
</tr>
<tr>
<td>2006</td>
<td>13,944</td>
<td>24,000</td>
<td>58%</td>
</tr>
<tr>
<td>2007</td>
<td>9,022</td>
<td>24,000</td>
<td>38%</td>
</tr>
<tr>
<td>2008</td>
<td>15,900</td>
<td>24,000</td>
<td>66%</td>
</tr>
<tr>
<td>2009</td>
<td>18,418</td>
<td>24,000</td>
<td>77%</td>
</tr>
<tr>
<td>2010</td>
<td>15,825</td>
<td>24,000</td>
<td>66%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Commercial Fishery and Community Analysis

The following tables describe, for *Illex* in 2010, the total landings, value, numbers of vessels making landings, numbers of trips landing *Illex* (Table 37), landings by state (Table 38), landings by month (Table 39), landings by gear (Table 40), numbers of permitted and active vessels by state (Table 41), numbers of permitted and active dealers by state (Table 42), and landings by NMFS federal permit category (Table 43). Previous Specification EA's have included port information but because of confidentiality concerns such tables are not able to include much relevant information and have been deleted.
Table 37. **Total Landings and Value of *Illex* During 2010.**
(Based on unpublished NMFS dealer reports. For Vessels and Trips, only landing records with recorded NERO Permits or Hull Numbers landing over 1,000 pounds annually for “Vessels” and 100 pounds on a trip for “Trips” are considered. Since some state records do not include permit/hull information, the vessel and trip numbers are somewhat underestimated but account for the vast majority of landings.)

<table>
<thead>
<tr>
<th></th>
<th>Landings (mt)</th>
<th>Value ($)</th>
<th>Vessels</th>
<th>Trips</th>
<th>$/mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illex</td>
<td>15,825</td>
<td>10,758,235</td>
<td>24</td>
<td>248</td>
<td>$680</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Table 38. **Illex Landings (mt) by State in 2010.**

<table>
<thead>
<tr>
<th>State</th>
<th>Landings_mt</th>
<th>Pct_of_Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>9,224</td>
<td>58%</td>
<td></td>
</tr>
<tr>
<td>Rhode Island</td>
<td>5,639</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>521</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Virginia</td>
<td>435</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15,825</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Table 39. **Illex Squid Landings (mt) by Month in 2010.**
Table 40. *Illex* Landings (mt) by Gear Category in 2010.

<table>
<thead>
<tr>
<th>GEAR_NAME</th>
<th>Landings (mt)</th>
<th>Pct of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAWL,OTTER,BOTTOM,FISH</td>
<td>11,066</td>
<td>70%</td>
</tr>
<tr>
<td>TRAWL,OTTER,MIDWATER</td>
<td>4,232</td>
<td>27%</td>
</tr>
<tr>
<td>TRAWL,OTTER,BOTTOM,OTHER</td>
<td>520</td>
<td>3%</td>
</tr>
<tr>
<td>Other</td>
<td>7</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>15,825</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS vessel trip reports

Table 41. *Illex* Moratorium Vessel Permit Holders and Active Vessels in 2010 by Homeport State (HPST).

<table>
<thead>
<tr>
<th>HPST</th>
<th>Permitted Vessels</th>
<th>Active Vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJ</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>MA</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>RI</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>NC</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>NY</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>76</td>
<td>26</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports.
Table 42. Mackerel, Squid, Butterfish Dealer Permit Holders and Permitted Dealers Who Bought *Illex* in 2010 by State.

<table>
<thead>
<tr>
<th>State</th>
<th>Permitted Dealers</th>
<th>Active Dealers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC+VA</td>
<td>41</td>
<td>12</td>
</tr>
<tr>
<td>MA</td>
<td>109</td>
<td>6</td>
</tr>
<tr>
<td>RI</td>
<td>39</td>
<td>5</td>
</tr>
<tr>
<td>NY+NJ</td>
<td>126</td>
<td>6</td>
</tr>
<tr>
<td>Others</td>
<td>51</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Table 43. *Illex* Landings by Permit Category for the Period 2000-2010.

<table>
<thead>
<tr>
<th>Year</th>
<th>Illex Moratorium Permit</th>
<th>Party/Charter</th>
<th>Incidental</th>
<th>No Permit/Unknown</th>
<th>Total</th>
<th>Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mt</td>
<td>%</td>
<td>mt</td>
<td>%</td>
<td>mt</td>
<td>%</td>
</tr>
<tr>
<td>2001</td>
<td>3,922</td>
<td>98%</td>
<td>0</td>
<td>0%</td>
<td>86</td>
<td>2%</td>
</tr>
<tr>
<td>2002</td>
<td>2,743</td>
<td>100%</td>
<td>2</td>
<td>0%</td>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>2003</td>
<td>6,389</td>
<td>100%</td>
<td>2</td>
<td>0%</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>2004</td>
<td>25,046</td>
<td>99%</td>
<td>140</td>
<td>1%</td>
<td>237</td>
<td>1%</td>
</tr>
<tr>
<td>2005</td>
<td>11,146</td>
<td>95%</td>
<td>23</td>
<td>0%</td>
<td>548</td>
<td>5%</td>
</tr>
<tr>
<td>2006</td>
<td>13,778</td>
<td>100%</td>
<td>52</td>
<td>0%</td>
<td>7</td>
<td>0%</td>
</tr>
<tr>
<td>2007</td>
<td>9,019</td>
<td>100%</td>
<td>10</td>
<td>0%</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>2008</td>
<td>15,863</td>
<td>100%</td>
<td>10</td>
<td>0%</td>
<td>36</td>
<td>0%</td>
</tr>
<tr>
<td>2009</td>
<td>18,409</td>
<td>100%</td>
<td>9</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2010</td>
<td>15,818</td>
<td>100%</td>
<td>10</td>
<td>0%</td>
<td>6</td>
<td>0%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Description of the Areas Fished in VTR Reports

Vessel Trip Reports (VTRs) represent captains' estimates of kept weight of fish/squid. VTR reports, which are a subset of the landings data, provide the approximate location of kept fish/squid. VTR reports for *Illex* in 2010 by NMFS three digit statistical area (see Figure 47) are given in Table 44.
Table 44. Statistical Areas from Which 1% or More of Illex Were Kept in 2010 According to VTR Reports.

<table>
<thead>
<tr>
<th>Stat Area</th>
<th>Landings (mt)</th>
<th>Percentage from Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>622</td>
<td>10444.06</td>
<td>68%</td>
</tr>
<tr>
<td>632</td>
<td>1748.89</td>
<td>11%</td>
</tr>
<tr>
<td>626</td>
<td>1187.52</td>
<td>8%</td>
</tr>
<tr>
<td>628</td>
<td>752.52</td>
<td>5%</td>
</tr>
<tr>
<td>537</td>
<td>393.77</td>
<td>3%</td>
</tr>
<tr>
<td>616</td>
<td>325.39</td>
<td>2%</td>
</tr>
<tr>
<td>615</td>
<td>171.91</td>
<td>1%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS VTR reports.
6.7.3 Atlantic butterfish

Historical Commercial Fishery

Atlantic butterfish were landed exclusively by U.S. fishermen from the late 1800's (when formal record keeping began) until 1962 (Murawski and Waring 1979). Reported landings averaged about 3,000 mt from 1920-1962 (Waring 1975). Beginning in 1963, vessels from Japan, Poland and the Union of Soviet Socialist Republics began to exploit butterfish along the edge of the continental shelf during the late-autumn through early spring. Reported foreign catches of butterfish increased from 750 mt in 1965 to 15,000 mt in 1969, and then to about 32,000 mt in 1973. With the advent of extended jurisdiction in U.S. waters, reported foreign catches declined sharply from 14,000 mt in 1976 to 2,000 mt in 1978 (Figure 53). Foreign landings were completely phased out by 1987.

![Figure 53. Historical Butterfish Landings in the U.S. EEZ.](image)

During the period 1965-1976, U.S. Atlantic butterfish landings averaged 2,051 mt. From 1977-1987, average U.S. landings doubled to 5,252 mt, with a historical peak of slightly less than 12,000 mt landed in 1984. Since then U.S. landings have declined sharply. Low abundance and reductions in Japanese demand for butterfish has probably had a negative effect on butterfish landings. Price (nominal) has increased fitfully since 1982 and averaged $1,404/mt in 2010.
Analysis of NMFS weighout data 1982-2010 is used to chart annual averages for U.S. landings (mt), ex-vessel value ($), and prices ($/mt) in the figures below.

Figure 54. U.S. Butterfish Landings.
Source: Unpublished NMFS dealer reports

Figure 55. U.S. Butterfish Ex-vessel Revenues.
Source: Unpublished NMFS dealer reports
Specification Performance

The principle measure used to manage butterfish landings is monitoring via dealer weighout data that is submitted weekly. The dealer data triggers in-season management actions that institute relatively low trip limits when 80% of the DAH is landed. Mandatory reporting for butterfish was fully instituted in 1997 so performance since 1997 is most relevant. Table 45 lists the performance of the butterfish fishery compared to its DAH. There had been no overages before 2010. There were closures in 2008 and 2009 but the closure threshold and the trip limits performed as designed and prevented an overage. It is unclear why there was an overage in 2010 but prospects for 2012 are discussed in the impacts section.

Table 45. Butterfish DAH Performance (mt)

<table>
<thead>
<tr>
<th>Year</th>
<th>Harvest (only commercial)</th>
<th>Quota</th>
<th>Percent of Quota Landed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>2,795</td>
<td>5,900</td>
<td>47%</td>
</tr>
<tr>
<td>1998</td>
<td>1,966</td>
<td>5,900</td>
<td>33%</td>
</tr>
<tr>
<td>1999</td>
<td>2,110</td>
<td>5,900</td>
<td>36%</td>
</tr>
<tr>
<td>2000</td>
<td>1,449</td>
<td>5,900</td>
<td>25%</td>
</tr>
<tr>
<td>2001</td>
<td>4,404</td>
<td>5,897</td>
<td>75%</td>
</tr>
<tr>
<td>2002</td>
<td>872</td>
<td>5,900</td>
<td>15%</td>
</tr>
<tr>
<td>2003</td>
<td>536</td>
<td>5,900</td>
<td>9%</td>
</tr>
<tr>
<td>2004</td>
<td>537</td>
<td>5,900</td>
<td>9%</td>
</tr>
<tr>
<td>2005</td>
<td>428</td>
<td>1,681</td>
<td>25%</td>
</tr>
<tr>
<td>2006</td>
<td>554</td>
<td>1,681</td>
<td>33%</td>
</tr>
<tr>
<td>2007</td>
<td>678</td>
<td>1,681</td>
<td>40%</td>
</tr>
<tr>
<td>2008</td>
<td>451</td>
<td>500</td>
<td>90%</td>
</tr>
<tr>
<td>2009</td>
<td>435</td>
<td>500</td>
<td>87%</td>
</tr>
<tr>
<td>2010</td>
<td>603</td>
<td>500</td>
<td>121%</td>
</tr>
</tbody>
</table>
Commercial Fishery and Community Analysis

The following tables describe, for butterfish in 2010, the total landings, value, numbers of vessels making landings, numbers of trips landing butterfish (Table 46), landings by state (Table 47), landings by month (Table 48), landings by gear (Table 49), landings by port (Table 50), numbers of permitted vessels by state (Table 51), numbers of permitted dealers by state (Table 52), and landings by NMFS federal permit category (Table 53). Previous Specification EA’s have included additional port information (dependence) but because of confidentiality concerns such tables are not able to include much relevant information and have been deleted.

Table 46. Total Landings and Value of Butterfish During 2010.
(Based on unpublished NMFS dealer reports. For Vessels and Trips, only landing records with recorded NERO Permits or Hull Numbers landing over 1,000 pounds annually for “Vessels” and 100 pounds on a trip for “Trips” are considered. Since some state records do not include permit/hull information, the vessel and trip numbers are somewhat underestimated but account for the vast majority of landings.)

<table>
<thead>
<tr>
<th></th>
<th>Landings (mt)</th>
<th>Value ($)</th>
<th>Vessels</th>
<th>Trips</th>
<th>$/mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butterfish</td>
<td>603</td>
<td>865,703</td>
<td>131</td>
<td>2,567</td>
<td>1,435</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Table 47. Butterfish Landings (mt) by State in 2010.

<table>
<thead>
<tr>
<th>State</th>
<th>Landings mt</th>
<th>Pct of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhode Island</td>
<td>254</td>
<td>42%</td>
</tr>
<tr>
<td>New York</td>
<td>184</td>
<td>30%</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>79</td>
<td>13%</td>
</tr>
<tr>
<td>Connecticut</td>
<td>31</td>
<td>10%</td>
</tr>
<tr>
<td>New Jersey</td>
<td>20</td>
<td>3%</td>
</tr>
<tr>
<td>Virginia</td>
<td>5</td>
<td>1%</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Maryland</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Delaware</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Maine</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>576</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports.
Table 48. Butterfish Landings (mt) by Month in 2010.

<table>
<thead>
<tr>
<th>MONTH</th>
<th>Landings (mt)</th>
<th>Pct of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>34</td>
<td>6%</td>
</tr>
<tr>
<td>February</td>
<td>19</td>
<td>3%</td>
</tr>
<tr>
<td>March</td>
<td>25</td>
<td>4%</td>
</tr>
<tr>
<td>April</td>
<td>49</td>
<td>8%</td>
</tr>
<tr>
<td>May</td>
<td>84</td>
<td>14%</td>
</tr>
<tr>
<td>June</td>
<td>94</td>
<td>16%</td>
</tr>
<tr>
<td>July</td>
<td>66</td>
<td>11%</td>
</tr>
<tr>
<td>August</td>
<td>74</td>
<td>12%</td>
</tr>
<tr>
<td>September</td>
<td>44</td>
<td>7%</td>
</tr>
<tr>
<td>October</td>
<td>58</td>
<td>10%</td>
</tr>
<tr>
<td>November</td>
<td>39</td>
<td>6%</td>
</tr>
<tr>
<td>December</td>
<td>19</td>
<td>3%</td>
</tr>
<tr>
<td>Total</td>
<td>603</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Table 49. Butterfish Landings (mt) by Gear Category in 2010.

<table>
<thead>
<tr>
<th>GEAR_NAME</th>
<th>Landings (mt)</th>
<th>Pct of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAWL,OTTER,BOTTOM,FISH</td>
<td>408</td>
<td>68%</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>119</td>
<td>20%</td>
</tr>
<tr>
<td>Other</td>
<td>76</td>
<td>13%</td>
</tr>
<tr>
<td>Total</td>
<td>603</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer data.
Table 50. Butterfish Landings by Port in 2010.

<table>
<thead>
<tr>
<th>name</th>
<th>ST_Name</th>
<th>Landings_mt</th>
<th>Pct_of_Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT JUDITH</td>
<td>RHODE ISLAND</td>
<td>190</td>
<td>31%</td>
</tr>
<tr>
<td>MONTAUK</td>
<td>NEW YORK</td>
<td>131</td>
<td>22%</td>
</tr>
<tr>
<td>NEW BEDFORD</td>
<td>MASSACHUSETTS</td>
<td>54</td>
<td>9%</td>
</tr>
<tr>
<td>STONINGTON</td>
<td>CONNECTICUT</td>
<td>23</td>
<td>7%</td>
</tr>
<tr>
<td>NEWPORT</td>
<td>RHODE ISLAND</td>
<td>32</td>
<td>5%</td>
</tr>
<tr>
<td>LITTLE COMPTON</td>
<td>RHODE ISLAND</td>
<td>28</td>
<td>5%</td>
</tr>
<tr>
<td>HAMPTON BAYS</td>
<td>NEW YORK</td>
<td>24</td>
<td>4%</td>
</tr>
<tr>
<td>AMAGANSETT</td>
<td>NEW YORK</td>
<td>11</td>
<td>2%</td>
</tr>
<tr>
<td>Other</td>
<td>Various</td>
<td>90</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>583</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports
Table 51. Longfin Squid/Butterfish Moratorium Vessel Permit Holders in 2010 by Homeport State (HPST) and How Many of Those Vessels Were Active.

<table>
<thead>
<tr>
<th>HPST</th>
<th>Permitted Vessels</th>
<th>Active Vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>96</td>
<td>16</td>
</tr>
<tr>
<td>NJ</td>
<td>84</td>
<td>31</td>
</tr>
<tr>
<td>NY</td>
<td>54</td>
<td>39</td>
</tr>
<tr>
<td>RI</td>
<td>51</td>
<td>44</td>
</tr>
<tr>
<td>NC</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>ME</td>
<td>17</td>
<td>.</td>
</tr>
<tr>
<td>VA</td>
<td>13</td>
<td>.</td>
</tr>
<tr>
<td>CT</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>MD</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>NH</td>
<td>2</td>
<td>.</td>
</tr>
<tr>
<td>PA</td>
<td>2</td>
<td>.</td>
</tr>
<tr>
<td>WV</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>351</td>
<td>142</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports and NMFS permit database data

Table 52. Mackerel, Squid, Butterfish Dealer Permit Holders and How Many Were Active (bought butterfish) in 2010 by State.

<table>
<thead>
<tr>
<th>State</th>
<th>Permitted Dealers</th>
<th>Active Dealers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NY</td>
<td>87</td>
<td>32</td>
</tr>
<tr>
<td>RI</td>
<td>39</td>
<td>17</td>
</tr>
<tr>
<td>MA</td>
<td>109</td>
<td>12</td>
</tr>
<tr>
<td>VA</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>NJ</td>
<td>39</td>
<td>6</td>
</tr>
<tr>
<td>Others</td>
<td>75</td>
<td>5</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports and NMFS permit database data
Table 53. Butterfish Landings by Permit Category for the Period 2001-2010.

<table>
<thead>
<tr>
<th>Year</th>
<th>Loligo/Butterfish Moratorium Permit</th>
<th>Party/Charter</th>
<th>Incidental</th>
<th>No Permit/Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mt</td>
<td>%</td>
<td>mt</td>
<td>%</td>
<td>mt</td>
</tr>
<tr>
<td>2001</td>
<td>3,991</td>
<td>91%</td>
<td>0</td>
<td>0%</td>
<td>52</td>
</tr>
<tr>
<td>2002</td>
<td>653</td>
<td>75%</td>
<td>0</td>
<td>0%</td>
<td>39</td>
</tr>
<tr>
<td>2003</td>
<td>367</td>
<td>69%</td>
<td>0</td>
<td>0%</td>
<td>17</td>
</tr>
<tr>
<td>2004</td>
<td>329</td>
<td>61%</td>
<td>0</td>
<td>0%</td>
<td>22</td>
</tr>
<tr>
<td>2005</td>
<td>265</td>
<td>62%</td>
<td>0</td>
<td>0%</td>
<td>13</td>
</tr>
<tr>
<td>2006</td>
<td>386</td>
<td>70%</td>
<td>0</td>
<td>0%</td>
<td>36</td>
</tr>
<tr>
<td>2007</td>
<td>535</td>
<td>79%</td>
<td>0</td>
<td>0%</td>
<td>43</td>
</tr>
<tr>
<td>2008</td>
<td>350</td>
<td>78%</td>
<td>0</td>
<td>0%</td>
<td>32</td>
</tr>
<tr>
<td>2009</td>
<td>345</td>
<td>79%</td>
<td>0</td>
<td>0%</td>
<td>41</td>
</tr>
<tr>
<td>2010</td>
<td>454</td>
<td>75%</td>
<td>0</td>
<td>0%</td>
<td>67</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports and NMFS permit database data

Description of the Areas Fished in VTR Reports

Vessel Trip Reports (VTRs) represent captains' estimates of kept weight of fish/squid. VTR reports, which are a subset of the landings data, provide the approximate location of kept fish/squid. VTR reports for butterfish in 2010 by NMFS three digit statistical area (see Figure 47 except as noted in table below) are given in Table 54.

Table 54. Statistical Areas from Which 1% or More of Butterfish were Kept in 2010 According to VTR Reports.

<table>
<thead>
<tr>
<th>Stat Area</th>
<th>Landings (mt)</th>
<th>Percentage from Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>537</td>
<td>126.917</td>
<td>26%</td>
</tr>
<tr>
<td>539</td>
<td>65.393</td>
<td>13%</td>
</tr>
<tr>
<td>611</td>
<td>54.078</td>
<td>11%</td>
</tr>
<tr>
<td>616</td>
<td>36.06</td>
<td>7%</td>
</tr>
<tr>
<td>613</td>
<td>28.928</td>
<td>6%</td>
</tr>
<tr>
<td>562</td>
<td>27.249</td>
<td>6%</td>
</tr>
<tr>
<td>525</td>
<td>25.546</td>
<td>5%</td>
</tr>
<tr>
<td>522</td>
<td>20.464</td>
<td>4%</td>
</tr>
<tr>
<td>148</td>
<td>16.927</td>
<td>3%</td>
</tr>
<tr>
<td>612</td>
<td>12.249</td>
<td>2%</td>
</tr>
<tr>
<td>514</td>
<td>11.496</td>
<td>2%</td>
</tr>
<tr>
<td>538</td>
<td>10.073</td>
<td>2%</td>
</tr>
<tr>
<td>622</td>
<td>6.35</td>
<td>1%</td>
</tr>
<tr>
<td>166</td>
<td>5.659</td>
<td>1%</td>
</tr>
<tr>
<td>121</td>
<td>5.302</td>
<td>1%</td>
</tr>
</tbody>
</table>
Historical Commercial Fishery

United States fishermen have been landing squid along the Northeastern coast of the U.S. since the 1880's (Kolator and Long 1978). The early domestic fishery utilized fish traps and otter trawls but was of relatively minor importance to the U.S. fishery due to low market demand. The squid taken were used primarily for bait (Lux et al. 1974). However, squid have long been a popular food fish in various foreign markets and therefore a target of the foreign fishing fleets throughout the world, including both coasts of North America (Okutani 1977). Union of Soviet Socialist Republics vessels first reported catches of squid off the Northeastern coast of the United States in 1964. Fishing effort directed at the squids began in 1968 by the Union of Soviet Socialist Republics and Japanese vessels. By 1972, Spain, Portugal and Poland had also entered the fishery. Reported foreign landings of longfin squid increased from 2000 mt in 1964 to a peak of 36,500 mt in 1973. Foreign longfin squid landings averaged 29,000 mt for the period 1972-1975 (Figure 57).

![Figure 57. Historical Longfin Squid Landings in the U.S. EEZ.](image)

Foreign fishing for longfin squid began to be regulated with the advent of extended fishery jurisdiction in the U.S. in 1977. Initially, U.S. regulations restricted foreign vessels fishing for squid (and other species) to certain areas and times (the so-called foreign fishing "windows"), primarily to reduce spatial conflicts with domestic fixed gear fishermen and minimize discards of non-target species. The result of these restrictions was an immediate reduction in the foreign catch of longfin squid from 21,000 mt in 1976 to 9,355 mt in 1978.

By 1982, foreign longfin squid landings had again risen above 20,000 mt. At this time, U.S. management of the squid resources focused on the Americanization of these fisheries. This process began with the development of joint ventures between U.S. fishermen and foreign
concerns. Domestic annual harvest (DAH) was increased from 7,000 mt in the 1982-83 fishing year to 22,000 mt for 1983-84. Foreign allocations were reduced from 20,350 mt during 1982-83 to 5,550 mt during 1983-84 (Lange 1985). The foreign catch of longfin squid fell below 5,000 mt by 1986, to 2 mt in 1987 and finally to zero in 1990. Price (nominal) has increased fitfully since 1982 and averaged $1,968/mt in 2010.

The development and expansion of the U.S. squid fishery was slow to occur for several reasons. First, the domestic market demand for squid in the U.S. had traditionally been limited to the bait market. Secondly, the U.S. fishing industry lacked both the catching and processing technology necessary to exploit squid in offshore waters. In the late 19th and early 20th centuries, squid were taken primarily by pound nets. Even though bottom otter trawls eventually replaced pound nets as the primary gear used to capture squid during this century, the U.S. industry did not develop the appropriate technology to catch and process squid in offshore waters until the 1980's. Analysis of NMFS weighout data 1982-2010 is used to chart annual averages for U.S. landings (mt), ex-vessel value ($), and prices ($/mt) in the figures below.

![Figure 58. U.S. Longfin Squid Landings.](source: Unpublished NMFS dealer reports)
Specification Performance

The principle measure used to manage longfin squid is Trimester quota monitoring via dealer weighout data that is submitted weekly. The dealer data triggers in-season management actions that institute relatively low trip limits when 90% of the Trimester quotas are reached in Trimesters 1 and 2 and when 95% of the annual DAH is reached in Trimester 3. Mandatory reporting for longfin squid was fully instituted in 1997 so performance since 1997 is most relevant. Table 55 lists the performance of the longfin squid fishery compared to its DAH. There has been one overage in the last 12 years, a 17% overage in 2000. NMFS is continually augmenting its quota projecting procedures so presumably future overages would be even less.
likely. There are occasional overages of the trimester quotas, but these are typically minor and should have negligible effects since Trimester 1 and 2 overages are applied to Trimester 3.

Table 55. Longfin Squid DAH Performance (mt)

<table>
<thead>
<tr>
<th>Year</th>
<th>Harvest (Commercial and Recreational)</th>
<th>Quota</th>
<th>Percent of Quota Landed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>16,113</td>
<td>21,000</td>
<td>77%</td>
</tr>
<tr>
<td>1998</td>
<td>19,123</td>
<td>21,000</td>
<td>91%</td>
</tr>
<tr>
<td>1999</td>
<td>19,109</td>
<td>21,000</td>
<td>91%</td>
</tr>
<tr>
<td>2000</td>
<td>17,475</td>
<td>15,000</td>
<td>117%</td>
</tr>
<tr>
<td>2001</td>
<td>14,238</td>
<td>17,000</td>
<td>84%</td>
</tr>
<tr>
<td>2002</td>
<td>16,703</td>
<td>17,000</td>
<td>98%</td>
</tr>
<tr>
<td>2003</td>
<td>11,935</td>
<td>17,000</td>
<td>70%</td>
</tr>
<tr>
<td>2004</td>
<td>15,628</td>
<td>17,000</td>
<td>92%</td>
</tr>
<tr>
<td>2005</td>
<td>16,716</td>
<td>17,000</td>
<td>98%</td>
</tr>
<tr>
<td>2006</td>
<td>15,907</td>
<td>17,000</td>
<td>94%</td>
</tr>
<tr>
<td>2007</td>
<td>12,343</td>
<td>17,000</td>
<td>73%</td>
</tr>
<tr>
<td>2008</td>
<td>11,385</td>
<td>17,000</td>
<td>67%</td>
</tr>
<tr>
<td>2009</td>
<td>9,307</td>
<td>19,000</td>
<td>49%</td>
</tr>
<tr>
<td>2010</td>
<td>6,855</td>
<td>18,667</td>
<td>37%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports
Commercial Fishery and Community Analysis

The following tables describe, for longfin squid in 2010, the total landings, value, numbers of vessels making landings, numbers of trips landing longfin squid (Table 56), landings by state (Table 57), landings by month (Table 58), landings by gear (Table 59), landings by port (Table 60), numbers of permitted and active vessels by state (Table 61), numbers of permitted and active dealers by state (Table 62), and landings by NMFS federal permit category (Table 63). Previous Specification EA's have included additional port information (dependence) but because of confidentiality concerns such tables are not able to include much relevant information and have been deleted.

Table 56. Total Landings and Value Longfin Squid During 2010.
(Based on unpublished NMFS dealer reports. For Vessels and Trips, only landing records with recorded NERO Permits or Hull Numbers landing over 1,000 pounds annually for “Vessels” and 100 pounds on a trip for “Trips” are considered. Since some state records do not include permit/hull information, the vessel and trip numbers are somewhat underestimated but account for the vast majority of landings.)

<table>
<thead>
<tr>
<th>Landings (mt)</th>
<th>Value ($</th>
<th>Vessels</th>
<th>Trips</th>
<th>$/mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longfin squid</td>
<td>6,855</td>
<td>15,675,661</td>
<td>197</td>
<td>4,479</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Table 57. Longfin Squid Landings (mt) by State in 2010.

<table>
<thead>
<tr>
<th>State</th>
<th>Landings (mt)</th>
<th>Pct_of_Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhode Island</td>
<td>3,342</td>
<td>49%</td>
</tr>
<tr>
<td>New York</td>
<td>1,769</td>
<td>26%</td>
</tr>
<tr>
<td>New Jersey</td>
<td>713</td>
<td>10%</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>701</td>
<td>10%</td>
</tr>
<tr>
<td>Connecticut</td>
<td>303</td>
<td>4%</td>
</tr>
<tr>
<td>Virginia</td>
<td>25</td>
<td>0%</td>
</tr>
<tr>
<td>Maryland</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Maine</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>6,855</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports
Table 58. Longfin Squid Landings (mt) by Month in 2010.

<table>
<thead>
<tr>
<th>MONTH</th>
<th>Landings mt</th>
<th>Pct of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>544</td>
<td>8%</td>
</tr>
<tr>
<td>February</td>
<td>345</td>
<td>5%</td>
</tr>
<tr>
<td>March</td>
<td>296</td>
<td>4%</td>
</tr>
<tr>
<td>April</td>
<td>278</td>
<td>4%</td>
</tr>
<tr>
<td>May</td>
<td>790</td>
<td>12%</td>
</tr>
<tr>
<td>June</td>
<td>543</td>
<td>8%</td>
</tr>
<tr>
<td>July</td>
<td>644</td>
<td>9%</td>
</tr>
<tr>
<td>August</td>
<td>280</td>
<td>4%</td>
</tr>
<tr>
<td>September</td>
<td>730</td>
<td>11%</td>
</tr>
<tr>
<td>October</td>
<td>1,075</td>
<td>16%</td>
</tr>
<tr>
<td>November</td>
<td>738</td>
<td>11%</td>
</tr>
<tr>
<td>December</td>
<td>590</td>
<td>9%</td>
</tr>
<tr>
<td>Totals</td>
<td>6,855</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Table 59. Longfin squid Landings (mt) by Gear Category in 2010.

<table>
<thead>
<tr>
<th>GEAR_NAME</th>
<th>Landings (mt)</th>
<th>Pct of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAWL,OTTER,BOTTOM,FISH</td>
<td>5,359</td>
<td>78%</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>1,043</td>
<td>15%</td>
</tr>
<tr>
<td>TRAWL,OTTER,MIDWATER</td>
<td>215</td>
<td>3%</td>
</tr>
<tr>
<td>Other</td>
<td>237</td>
<td>3%</td>
</tr>
<tr>
<td>Totals</td>
<td>6,855</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Table 60. Longfin Squid Landings by Port in 2010.

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Landings mt</th>
<th>Pct of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT JUDITH</td>
<td>RHODE ISLAND</td>
<td>2,713</td>
<td>40%</td>
</tr>
<tr>
<td>MONTAUK</td>
<td>NEW YORK</td>
<td>1,109</td>
<td>16%</td>
</tr>
<tr>
<td>NORTH KINGSTOWN</td>
<td>RHODE ISLAND</td>
<td>591</td>
<td>9%</td>
</tr>
<tr>
<td>CAPE MAY</td>
<td>NEW JERSEY</td>
<td>530</td>
<td>8%</td>
</tr>
<tr>
<td>NEW BEDFORD</td>
<td>MASSACHUSETTS</td>
<td>373</td>
<td>5%</td>
</tr>
<tr>
<td>HAMPTON BAYS</td>
<td>NEW YORK</td>
<td>351</td>
<td>5%</td>
</tr>
<tr>
<td>OTHER BARNSTABLE</td>
<td>MASSACHUSETTS</td>
<td>200</td>
<td>3%</td>
</tr>
<tr>
<td>STONINGTON</td>
<td>CONNECTICUT</td>
<td>177</td>
<td>3%</td>
</tr>
<tr>
<td>POINT LOOKOUT</td>
<td>NEW YORK</td>
<td>174</td>
<td>3%</td>
</tr>
<tr>
<td>POINT PLEASANT</td>
<td>NEW JERSEY</td>
<td>109</td>
<td>2%</td>
</tr>
<tr>
<td>BELFORD</td>
<td>NEW JERSEY</td>
<td>74</td>
<td>1%</td>
</tr>
<tr>
<td>Others</td>
<td>NA</td>
<td>455</td>
<td>7%</td>
</tr>
<tr>
<td>Total</td>
<td>NA</td>
<td>6,855</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports
Table 61. Longfin Squid-Butterfish Moratorium Vessel Permit Holders in 2010 by Homeport State (HPST) and How Many of Those Vessels Were Active (landed longfin squid)

<table>
<thead>
<tr>
<th>HPST</th>
<th>Permitted Vessels</th>
<th>Active Vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>96</td>
<td>22</td>
</tr>
<tr>
<td>NJ</td>
<td>84</td>
<td>46</td>
</tr>
<tr>
<td>NY</td>
<td>54</td>
<td>43</td>
</tr>
<tr>
<td>RI</td>
<td>51</td>
<td>44</td>
</tr>
<tr>
<td>NC</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>ME</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>VA</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>CT</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>MD</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>NH</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>PA</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>WV</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>351</td>
<td>173</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports

Table 62. Mackerel, Squid, Butterfish Dealer Permit Holders by State and How Many Were Active (bought longfin squid) in 2010 by State.

<table>
<thead>
<tr>
<th>State</th>
<th>Permitted Dealers</th>
<th>Active Dealers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NY</td>
<td>87</td>
<td>36</td>
</tr>
<tr>
<td>RI</td>
<td>39</td>
<td>19</td>
</tr>
<tr>
<td>MA</td>
<td>109</td>
<td>15</td>
</tr>
<tr>
<td>NJ</td>
<td>39</td>
<td>9</td>
</tr>
<tr>
<td>VA</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>CT</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>MD</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>ME</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>NC</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Others</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>366</td>
<td>90</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports
<table>
<thead>
<tr>
<th>Year</th>
<th>Loligo/Butterfish</th>
<th>Party/Charter</th>
<th>Incidental</th>
<th>No Permit/Unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mt</td>
<td>%</td>
<td>mt</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>13,423</td>
<td>94%</td>
<td>0</td>
<td>0%</td>
<td>14,232</td>
</tr>
<tr>
<td>2002</td>
<td>15,275</td>
<td>91%</td>
<td>4</td>
<td>0%</td>
<td>17,000</td>
</tr>
<tr>
<td>2003</td>
<td>10,988</td>
<td>92%</td>
<td>0</td>
<td>0%</td>
<td>11,935</td>
</tr>
<tr>
<td>2004</td>
<td>14,183</td>
<td>91%</td>
<td>1</td>
<td>0%</td>
<td>15,628</td>
</tr>
<tr>
<td>2005</td>
<td>15,068</td>
<td>90%</td>
<td>0</td>
<td>0%</td>
<td>16,703</td>
</tr>
<tr>
<td>2006</td>
<td>14,318</td>
<td>90%</td>
<td>0</td>
<td>0%</td>
<td>15,907</td>
</tr>
<tr>
<td>2007</td>
<td>11,360</td>
<td>92%</td>
<td>0</td>
<td>0%</td>
<td>12,343</td>
</tr>
<tr>
<td>2008</td>
<td>10,833</td>
<td>95%</td>
<td>0</td>
<td>0%</td>
<td>11,385</td>
</tr>
<tr>
<td>2009</td>
<td>8,719</td>
<td>94%</td>
<td>0</td>
<td>0%</td>
<td>9,307</td>
</tr>
<tr>
<td>2010</td>
<td>6,392</td>
<td>93%</td>
<td>1</td>
<td>0%</td>
<td>6,853</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS dealer reports and Permit database

Description of Areas Fished in VTR Reports

Vessel Trip Reports (VTRs) represent captains' estimates of kept weight of fish/squid. VTR reports, which are a subset of the landings data, provide the approximate location of kept fish/squid. VTR reports for longfin squid in 2010 by NMFS three digit statistical area (see Figure 47 except as noted in table below) are given in Table 64.

Table 64. Statistical Areas From Which 1% or More of Longfin Squid Were Kept in 2010 According to VTR Reports.

<table>
<thead>
<tr>
<th>Stat Area</th>
<th>Landings (mt)</th>
<th>Percentage from Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>616</td>
<td>2,470</td>
<td>33%</td>
</tr>
<tr>
<td>622</td>
<td>1,040</td>
<td>14%</td>
</tr>
<tr>
<td>537</td>
<td>595</td>
<td>8%</td>
</tr>
<tr>
<td>613</td>
<td>466</td>
<td>6%</td>
</tr>
<tr>
<td>612</td>
<td>465</td>
<td>6%</td>
</tr>
<tr>
<td>525</td>
<td>339</td>
<td>5%</td>
</tr>
<tr>
<td>539</td>
<td>333</td>
<td>4%</td>
</tr>
<tr>
<td>632</td>
<td>275</td>
<td>4%</td>
</tr>
<tr>
<td>611</td>
<td>226</td>
<td>3%</td>
</tr>
<tr>
<td>562</td>
<td>209</td>
<td>3%</td>
</tr>
<tr>
<td>538</td>
<td>197</td>
<td>3%</td>
</tr>
<tr>
<td>626</td>
<td>173</td>
<td>2%</td>
</tr>
<tr>
<td>121</td>
<td>86</td>
<td>1%</td>
</tr>
</tbody>
</table>

Source: Unpublished NMFS VTR reports
Butterfish Catch/Mortality Cap

Beginning in 2011 the longfin squid fishery was subject to closure if it caught too much butterfish (amounts are set annually - 1,436 mt in 2011), with the cap divided up such that closures could occur in Trimesters 1 (Jan-Apr) and 3 (Sept-Dec). The cap is important for the longfin squid fishery because changes in the butterfish specifications, and the resulting cap amount, can have effects related to the “shadow value” of butterfish for the longfin squid fishery (longfin Squid and butterfish are often caught together). Because of the butterfish cap, a constraint on total butterfish catch may limit production in the squid fishery, so butterfish takes on a “shadow value” in terms of the indirect impact on the longfin squid fishery. While the exact relationship between butterfish and longfin squid catches is unknown ahead of time for any given year, the “shadow value” of butterfish could be quite large; that is, the longfin squid fishery may recognize large increases in landings/revenues/profits from relatively small increases in the butterfish specifications (and vice-versa with decreases).

There was not a closure in Trimester 1 of 2011. As of December 1, 2011 the cap had not yet caused any closures of the longfin squid fishery and had utilized 56% of the total annual cap. The longfin squid fishery will close if 90% of the annual cap is utilized. Given the average 2011 rates of squid and butterfish catch, a cap closure probably will not occur in 2011 but the final result will depend on the observed catch rates in the final months of 2011. The cap operates in near real-time so operation in 2012 will depend on the total and relative amounts of longfin squid and butterfish caught in 2012. Additional details on the cap may be found here:

THIS SPACE INTENTIONALLY LEFT BLANK
7.0 Analysis of the Impacts of the Alternatives

For all Alternative Sets (1-8) and all valued ecosystem components (VECs), the first alternative ("a") equals no-action, which is what is predicted to happen with the status quo management measures. Subsequent alternatives are the action alternatives and diverge from the status quo management measures as described in Section 5. The impact analysis focuses on the valued ecosystem components (VECs) that were identified for Amendment 14 and described in detail in Section 6.0 of this document. These VECs include:

1. Managed Resources
 - Atlantic mackerel stock
 - Illex stock
 - Longfin squid stock
 - Atlantic butterfish stock

2. Non-target species
 - Non-Target species include river herrings (blueback and alewife) and shads (American and hickory), collectively referred to as RH/S. Given the lack of information on how these species travel and mix in the ocean, different impacts are generally not discernible between these species but are noted where appropriate (for example in caps that are placed on particular species)

3. Habitat including EFH for the managed resources and non-target species

4. Endangered and other protected resources

5. Human Communities

While in previous MSB FMP EISs the impacts from all alternatives are grouped together for each VEC, with the large number of alternatives in this amendment (about 80), the result would that one would start with managed resources, have ~80 associated impacts, then have ~80 impacts for non-target species, and so on with the other VECs. This format seemed to lead to a disconnect in evaluating each alternative in terms of its overall positive and negative impacts across different VECs. As a result, the impact analysis in this EIS proceeds alternative by alternative with impacts for each VEC described for a given alternative before moving on to the next alternative’s impacts (Sections 7.1-7.8). Section 7.9 summarizes combined effects of the Council’s preferred alternatives by VEC.

In this section, a variety of terms (e.g. positive or negative) have specific meanings for each VEC and are described below.
Managed Species, Non-Target Species, Protected Species:

Note: Often impacts are indirect in that an action may change overall effort, which would decrease impacts if effort goes down or increase impacts if effort goes up.

Neutral/negligible: actions that are expected to have no discernible impact on stock/population size.

Positive: actions that increase stock/population size

Negative: actions that decrease stock/population size

Habitat:

Note: Often impacts are indirect in that an action may change overall effort, which would decrease impacts if effort goes down or increase impacts if effort goes up.

Neutral/negligible: actions that are expected to have no discernible impact on habitat

Positive: actions that improve the quality or reduce disturbance of habitat

Negative: actions that degrade the quality or increase disturbance of habitat

Human Communities:

Neutral/negligible: actions that are expected to have no discernible impact on human communities

Positive: actions that increase revenue and well-being of fishermen, associated businesses, or other interested parties.

Negative: actions that decrease revenue and well-being of fishermen, associated businesses, or other interested parties.

Mixed: The action would create benefits for some and costs for others. Generally in such cases there are costs to MSB fishery participants but potential benefits to other fishermen (commercial or recreational) or other interested parties who value MSB or RH/S resources.
Impact Qualifiers:

The following qualifiers are also used in the impact analysis:

- **Low** (as in low positive or low negative): to a lesser or small degree
- **High** (as in high positive or high negative) to a greater or large degree
- **Potentially:** A relatively higher degree of uncertainty is associated with the impact. Often this qualifier is used when an action may lead to better data, but future actions would have to actually use that data in decision making in order for there to be a concrete benefit.

If impacts are expected to be isolated to a particular species, usually either mackerel, longfin squid, *Illex* squid, butterfish, or river herrings and shads (RH/S) then this fact will be noted as well.

All comparisons are in reference to changes from the no-action alternative or relative to other alternatives in the document. To some extent, the operation of the MSB fisheries is currently negatively affecting the target stocks, RH/S stocks, other non-target species, habitat, and protected resources compared to if there was no fishery. Thus, the theoretical “lost opportunities” of not taking action compared to taking action are also described under impacts for the “no-action” alternative within each Alternative Set.

Note on the Difficulties in Linking Impacts from Amendment 14 and Benefits Related to RH/S Conservation:

To the extent that alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other species, then choosing such alternatives might result in long term benefits to society related to future commercial revenues (profit information is unavailable), recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). The benefits of rebuilding fisheries for even just commercial utilization are generally well documented and accepted, for example as in Costello et al 2012. While recreational anglers can usually substitute species when one is unavailable (thereby minimizing welfare losses) there are still likely some benefits for every additional species that is available (Haab et al 2000) and there are potentially many anglers (there were about 7 million total coast-wide (Atlantic) participating in-state anglers from Atlantic Coast states in 2010) who could realize such benefits. RH/S also support many predator populations that may provide related recreational benefits (from additional angling opportunities to bird and whale watching). Coupled with the positive benefits related to various cultural events (river herring and shad festivals), and existence values, the benefits of rebuilt RH/S populations are likely quite large.

One would expect that higher related benefits would result from actions that were more likely to restore RH/S populations. However, due to the uncertainty about how the productivity of RH/S is impacted by current catch levels overall and in the MSB fisheries in particular, it is difficult to quantify how such benefits may relate to measures considered in this document. The amount of benefit to RH/S stocks from any action affecting the MSB fisheries is unknown, so even though one might contemplate what the value of rebuilt RH/S fisheries might be, it is not possible to
know if an action in this document might actually lead or even substantially contribute to rebuilt RH/S fisheries because of the range of issues likely affecting RH/S stocks (ASMFC 2012, ASMFC 2007). This theme is repeated as appropriate in the Impacts Sections below.

7.1 Alternative Set 1: Additional Vessel Reporting Measures

Statement of Problem/Need for Action:

Relatively low levels of catch monitoring have resulted in relatively high uncertainty about catch of RH/S in Mid-Atlantic and New England fisheries, especially mid-water trawl (MWT) and small mesh bottom trawl (SMBT), both of which are used in the MSB fisheries. The Council is therefore considering actions to decrease uncertainty so as to improve the management of RH/S catches.

Background:

The measures in Alternative Set 1 would (alone and/or in combination with other alternatives) increase reporting and/or monitoring with the overall goal of improving the precision of RH/S catch estimates. While some of the focus may appear to be on mackerel and/or longfin squid general reporting compared to just RH/S in those fisheries, because extrapolations are often made based on total landings, accurate monitoring of the target species can be as important as determining the encounter rates of RH/S. This is because when estimations of non-target catch (including discards) such as RH/S are made with observer data, they are made based on the ratio of RH/S to total retained catch applied to landings data. For example, if it was found that in observer data, 1 pound of RH/S was caught for every 100 pounds of fish landed by mackerel vessels, and those same vessels landed 1,000,000 pounds of fish, one could estimate that 10,000 pounds of RH/S were caught. While small differences in the total landings number will not affect the estimate substantially, it is still important for both the ratio and the total landings number to be as accurate as feasibly possible.

NOTE ON COMBINATIONS: Most of the Alternative Set 1 action alternatives could be implemented individually or collectively. However, 1c (weekly VTRs for all MSB permits) would encompass 1bMack and 1bLong so these would not be selected together. The 48-hr mackerel pre-trip notification (1d48) and 72-hr mackerel pre-trip notification (1d72) would also be mutually exclusive – only one would be chosen if either. The VMS reporting alternatives (1f’s and 1g’s) would need the respective 1e’s (that require VMS) for each fishery as a prerequisite before requiring VMS reporting.

When comparing alternatives relative to the mackerel fishery or the longfin squid fishery, the mackerel alternatives are likely to have a greater positive impact on RH/S because substantially more RH/S appear to be caught in the mackerel fishery, but it is not possible to quantify the differential in potential benefits.
1a. No-action

If this alternative is selected, then no measures from Alternative Set 1 would be implemented and the existing reporting measures (as described in section 5.1) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below. While this section focuses on incremental impacts, cumulative impacts are discussed in Section 8.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A low negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 1 would somewhat improve reporting timeliness and accuracy, provide for better observer placement on directed mackerel trips, and potentially facilitate dockside monitoring and/or enforcement, there would be some foregone benefits if the no-action alternative is chosen. However, since the current reporting requirements are anticipated to be sufficient for quota monitoring of the managed species (there are no reported problems with current quota monitoring), it is not anticipated there would be any impacts on the managed resources. Dealer data is currently used to monitor MSB quotas, but due to the timeliness of dealer data (weekly) and VTR data (monthly), cross-checking data can take quite a long time. Implementing the no-action alternative compared to the other alternatives would forgo the benefit of being able to cross-check and reconcile data on a more real-time basis if weekly VTR reporting was implemented.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A negative impact would be expected compared to the action alternatives. Observer data is the primary source of data for discards, which are often non-target species. Since alternatives in Alternative Set 1 would provide for better observer placement there would be some foregone benefits to non-target species if the no-action alternative is chosen since better non-target catch information could lead to better management decisions. Alternatives in Alternative Set 1 could also potentially facilitate dockside monitoring (via VMS landings notifications), which could improve knowledge about retained non-target catch. Also, while monitoring of the managed species has not been a problem, to the degree that managed species catch is used in extrapolations for non-target species catch (see background above), more timely and accurate reporting of managed resources can also have an indirect benefit for non-target species and these indirect benefits would be forgone by selection of the no-action alternative.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the action alternatives. The action alternatives in Alternative Set 1 would somewhat provide for more timely and accurate quota monitoring compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing
fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes, and any changes could slightly either lengthen a season or shorten a season in any given year, probably leading to only minimal changes in effort, and thus negligible changes in gear interactions with habitat, over time.

4. **Protected Resources**

Neutral or negligible impacts would be expected compared to the action alternatives. The action alternatives in Alternative Set 1 would somewhat provide for more timely and accurate quota monitoring compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes, and any changes could slightly either lengthen a season or shorten a season in any given year, probably leading to only minimal changes in effort, and thus negligible changes rates of encounters with protected species, over time.

5. **Human Communities**

The impacts of the no-action alternative in comparison to the other alternatives for human communities appear mixed with uncertain net impacts. On one hand the costs to fishery participants of the additional reporting requirements would be avoided, which is a positive impact. These costs include additional VTR mailings, departure delays related to waiting for observers following pre-trip notifications, VMS costs, and the time taken to complete these requirements.

On the other hand, to the extent that Alternative Set 1 alternatives lead to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing the no-action alternative in comparison to the other alternatives might result in foregone benefits.

These could include lost commercial revenues, lost recreational opportunities, lost cultural values for RH/S, and/or other lost non-market existence values (i.e. value related to the knowledge that these species are being conserved successfully) resulting from diminished stocks compared to optimally productive stocks. Due to the uncertainty about how the mackerel and longfin squid fisheries are impacting either the managed species or RH/S, these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
1bMack. Institute weekly vessel trip reporting (VTR) for mackerel permits.

1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

A potentially low positive impact would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate mackerel quota monitoring compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes in the precision of quota monitoring if this alternative is selected. In situations where NMFS might have otherwise over-projected landings and issued a premature fishery closure, more frequent VTR reporting could allow additional landings, but not more than should be sustainable for each target fishery because overall landings are limited by a hard quota. In situations where NMFS might have otherwise under-projected landings and issued a closure for the fishery after the closure threshold had truly been reached, more frequent VTR reporting would avoid exceeding catch limits (by closing fisheries earlier). Since there is overlap in permits (some vessels have permits for all MSB species), there could also be some similar benefits to the other managed species because any mackerel-permitted vessel would have to report weekly even if targeting and catching other species.

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A potentially low positive impact would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate quota monitoring (directed or non-target catch) compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes in the precision of quota monitoring if this alternative is selected. Any changes could slightly either lengthen a season or shorten a season in any given year, probably leading to only minimal changes in effort, and thus negligible changes rates of encounters with non-target species, over time.

3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate quota monitoring compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes, and any changes could slightly either lengthen a season or shorten a season in any given year, probably leading to only minimal changes in effort, and thus negligible changes in gear interactions with habitat, over time.
4. **Protected Resources**

Neutral or negligible impacts would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate quota monitoring compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes, and any changes could slightly either lengthen a season or shorten a season in any given year, probably leading to only minimal changes in effort, and thus negligible changes rates of encounters with protected species, over time.

5. **Human Communities**

The impacts for human communities appear mixed with uncertain net impacts compared to the no-action alternative. On one hand costs to fishery participants would increase. The number of total mackerel permits can vary from month to month. Of the 1,974 vessels that had mackerel permits in November 2011, 67 did not also have a weekly VTR reporting requirement from another permit (herring or NE multispecies). Thus, about 67 vessels would ultimately be subject to additional reporting requirements because of this measure. Those 67 vessels must currently submit VTR reports monthly. This alternative would result in 40 (52 (weeks) -12 (months) = 40) additional VTR submissions per year for permit holders that don’t currently submit weekly VTRs. This would result in additional mailing costs of $19.36 per year (40 x $ 0.44 postage) per permitted vessel. Since VTRs must be filled out currently, the only additional time cost is the time cost of making a separate mailing which is negligible. Also, in situations where NMFS might have otherwise under-projected landings and issued a closure for the fishery after the closure threshold had truly been reached, more frequent VTR reporting would avoid exceeding catch limits (by closing fisheries), which could lower short-term revenues.

On the other hand, in situations where NMFS might have otherwise over-projected landings and issued a premature fishery closure, more frequent reporting could allow additional landings and revenues but not more than should be sustainable for each target fishery because overall landings are limited by a hard quota.

Also, to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative compared to the no-action alternative might result in benefits related to higher future commercial revenues, increased recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable, but since benefits to other VECs are low or negligible, the associated human community benefits should also be low or negligible as well.
1bLong. Institute weekly vessel trip reporting (VTR) for longfin squid/Butterfish permits.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate longfin squid quota monitoring compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes in the precision of quota monitoring if this alternative is selected. In situations where NMFS might have otherwise over-projected landings and issues a premature fishery closure, more frequent VTR reporting could allow additional landings, but not more than should be sustainable for each target fishery because overall landings are limited by a hard quota. In situations where NMFS might have otherwise under-projected landings and issue a closure for the fishery after the closure threshold had truly been reached, more frequent VTR reporting would avoid exceeding catch limits (by closing fisheries earlier). Since there is overlap in permits (some vessels have permits for all MSB species), there could also be some similar benefits to the other managed species because any longfin squid/Butterfish -permitted vessel would have to report weekly even if targeting and catching other species.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially low positive impact would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate quota monitoring (direct or non-targeted catch) compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes in the precision of quota monitoring if this alternative is selected. Any changes could slightly either lengthen a season or shorten a season in any given year, probably leading to only minimal changes in effort, and thus negligible changes rates of encounters with non-target species, over time.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate quota monitoring compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes, and any changes could slightly either lengthen a season or shorten a season in any given year, probably leading to only minimal changes in effort, and thus negligible changes in gear interactions with habitat, over time.
4. **Protected Resources**

Neutral or negligible impacts would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate quota monitoring compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes, and any changes could slightly either lengthen a season or shorten a season in any given year, probably leading to only minimal changes in effort, and thus negligible changes rates of encounters with protected species, over time.

5. **Human Communities**

The impacts for human communities appear mixed with uncertain net impacts compared to the no-action alternative. On one hand costs to fishery participants would increase. The number of incidental squid/butterfish permits can vary from month to month. Of the 1,891 vessels that had longfin squid /Butterfish Moratorium permits or squid/butterfish incidental permits in November 2011, 74 did not also have a weekly VTR reporting requirement from another permit (herring or NE multispecies). Thus, about 74 vessels would ultimately be subject to additional reporting requirements because of this measure. Those 74 vessels must currently submit VTR reports monthly. This alternative would result in 40 (52 (weeks) -12 (months) = 40) additional VTR submissions per year for permit holders that don’t currently submit weekly VTRs, resulting in additional mailing costs of $19.36 per year (40 x $ 0.44 postage) per permitted vessel. Since VTRs must be filled out currently, the only additional time cost is the time cost of making a separate mailing which is negligible. For informational purposes, about 9 of the 351 longfin squid /Butterfish moratorium permits do not currently have a weekly VTR reporting requirement from another permit (herring or NE multispecies). Also, in situations where NMFS might have otherwise under-projected landings, better reporting would avoid exceeding catch limits (by closing fisheries), lowering short-term revenues.

On the other hand, in situations where NMFS might have otherwise over-projected landings, better reporting could allow additional landings but not more than should be sustainable for the fishery. Also, to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative compared to the no-action alternative might result in benefits related to higher future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable, but since benefits to other VECs are low or negligible, the associated human community benefits should also be low or negligible as well.
1c. Institute weekly vessel trip reporting (VTR) for all MSB permits (Mackerel, longfin squid//Butterfish, *Illex*) so as to facilitate quota monitoring (directed landings and/or mortality cap if applicable) and cross checking with other data sources. (PREFERRED)

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate MSB quota monitoring compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes in the precision of quota monitoring if this alternative is selected. In situations where NMFS might have otherwise over-projected landings and issued a premature fishery closure, more frequent VTR reporting could allow additional landings, but not more than should be sustainable for each target fishery because overall landings are limited by a hard quota. In situations where NMFS might have otherwise under-projected landings and issued a closure for the fishery after the closure threshold had truly been reached, more frequent VTR reporting would avoid exceeding catch limits (by closing fisheries earlier).

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially low positive impact would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate quota monitoring (direct or non-targeted catch) compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes in the precision of quota monitoring if this alternative is selected. Any changes could slightly either lengthen a season or shorten a season in any given year, probably leading to only minimal changes in effort, and thus negligible changes rates of encounters with non-target species, over time.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate quota monitoring compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes, and any changes could slightly either lengthen a season or shorten a season in any given year, probably leading to only minimal changes in effort, and thus negligible changes in gear interactions with habitat, over time.
4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. This action alternative would somewhat provide for more timely and accurate quota monitoring compared to the no-action alternative. NMFS makes projections in order to close fisheries so having the timeliest and most accurate data reduces uncertainty about closing fisheries at the appropriate time. However, NMFS has not had major problems tracking and projecting MSB quotas in recent years so there should not be large changes, and any changes could slightly either lengthen a season or shorten a season in any given year, probably leading to only minimal changes in effort, and thus negligible changes rates of encounters with protected species, over time.

5. Human Communities

The impacts for human communities appear mixed with uncertain net impacts compared to the no-action alternative. On one hand costs to fishery participants would increase. Of the 2,622 vessels that have MSB permits in November 2011, 121 did not also have a weekly VTR reporting requirement from another permit (herring or NE multispecies). Thus about 121 vessels would ultimately be subject to additional reporting requirements because of this measure. This alternative would result in 40 (52 (weeks) -12 (months) = 40) additional VTR submissions per year for permit holders that don’t currently submit weekly VTRs, resulting in additional mailing costs of $19.36 per year (40 x $ 0.44 postage) per permit holder. The 121 vessels encompass the same affected vessels from 1bMack and 1bLong above (there is some overlap between 1bMack and 1bLong). Since VTRs must be filled out currently, the only additional time cost is the time cost of making a separate mailing which is negligible. Also, in situations where NMFS might have otherwise under-projected landings, better reporting would avoid exceeding catch limits (by closing fisheries), lowering short-term revenues.

On the other hand, in situations where NMFS might have otherwise over-projected landings, better reporting could allow additional landings but not more than should be sustainable for the fishery. Also, to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative compared to the no-action alternative might result in benefits related to higher future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable, but since benefits to other VECs are low or negligible, the associated human community benefits should also be low or negligible as well.

This alternative, which would institute weekly VTR reporting for all MSB permits rather than just one or two categories of permits (see 1bMack or 1bLong above), also has a benefit of simplifying reporting requirements because reporting would be more consistent across fisheries within the MSB FMP as well as across other FMPs (e.g. herring and Northeast multispecies) in the region.
1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

A potentially low positive impact would be expected compared to the no-action alternative of no notification requirements. Pre-trip notifications can lead to more systematic placement of observers, leading to better observer data that more accurately represents a particular fleet’s catches. To the degree that better observer data leads to more effective monitoring of discards of the managed species there may be some positive impacts to the managed species compared to the no-action alternative. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low. It is not expected that there would be any biological differences between 48 and 72 hour notifications.

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A positive impact would be expected compared to the no-action alternative. Pre-trip notifications can lead to more systematic placement of observers, leading to better observer data that more accurately represents a particular fleet’s catches. To the degree that better observer data leads to more effective management/reduction of non-target catch (including RH/S), this alternative could lead to positive impacts for non-target species compared to the no-action alternative. If a mortality cap on RH/S is implemented, obtaining a complete list of trips to sample becomes very important to ensure that NMFS is able to generate unbiased catch estimates.

3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative. More accurately targeting directed mackerel trips for observer coverage should not lead to any changes in fishing effort.

4. **Protected Resources**

A potentially positive impact would be expected compared to the no-action alternative. Pre-trip notifications can lead to more systematic placement of observers, leading to better observer data that more accurately represents a particular fleet’s catches. To the degree that better observer data leads to more effective management/reduction of protected resource interactions in the future, this alternative could lead to positive impacts for protected resources compared to the no-action alternative.
5. Human Communities

The impacts for human communities appear mixed with uncertain net impacts compared to the no-action alternative. On one hand costs to fishery participants would increase. This is similar to a 48-hour trip notification requirement in the longfin squid fishery that became effective in 2013. Fishermen have reported that the 48-hour notification sometimes means they are unable to target fleeting aggregations of longfin squid because they are not able to put to sea on short notice, especially if they are selected to take an observer. Fishermen have reported to Mid-Atlantic Council staff that a 24-hour notice would be best and that a 48 hour notice, while better than 72 hours, would still make it difficult for them to react to rapidly changing environmental and weather conditions. Therefore, compared to Alternative 1d72, this alternative may have a slightly less negative impact on human communities. It is estimated that notifying the observer program would take about 5 minutes per notification.

On the other hand to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative compared to the no-action alternative might result in benefits related to higher future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.

THIS SPACE INTENTIONALLY LEFT BLANK
1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

A potentially low positive impact would be expected compared to the no-action alternative of no notification requirements. Pre-trip notifications can lead to more systematic placement of observers, leading to better observer data that more accurately represents a particular fleet’s catches. To the degree that better observer data leads to more effective monitoring of discards of the managed species there may be some positive impacts to the managed species compared to the no-action alternative. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low. It is not expected that there would be any biological differences between 48 and 72 hour notifications.

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A positive impact would be expected compared to the no-action alternative. Pre-trip notifications can lead to more systematic placement of observers, leading to better observer data that more accurately represents a particular fleet’s catches. To the degree that better observer data leads to more effective management/reduction of non-target catch (including RH/S), this alternative could lead to positive impacts for non-target species compared to the no-action alternative. If a mortality cap on RH/S is implemented, obtaining a complete list of trips to sample becomes very important to ensure that NMFS is able to generate unbiased catch estimates.

3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative. More accurately targeting directed mackerel trips for observer coverage should not lead to any changes in fishing effort.

4. **Protected Resources**

A potentially positive impact would be expected compared to the no-action alternative. Pre-trip notifications can lead to more systematic placement of observers, leading to better observer data that more accurately represents a particular fleet’s catches. To the degree that better observer data leads to more effective management/reduction of protected resource interactions in the future, this alternative could lead to positive impacts for protected resources compared to the no-action alternative.

5. **Human Communities**

The impacts for human communities appear mixed with uncertain net impacts compared to the no-action alternative. On one hand costs to fishery participants would increase. This is similar to a 48-hour trip notification requirement in the longfin squid fishery that became effective in 2013. Fishermen have reported that the 48-hour notification sometimes means they are unable to
target fleeting aggregations of longfin squid because they are not able to put to sea on short notice, especially if they are selected to take an observer. Fishermen have reported to Mid-Atlantic Council staff that a 24-hour notice would be best and that a 48-hour notice, while better than 72 hours, would still make it difficult for them to react to rapidly changing environmental and weather conditions. Therefore, compared to alternative 1d48, this alternative may have slightly more negative impacts on human communities. It is estimated that notifying the observer program would take about 5 minutes per notification.

On the other hand to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative compared to the no-action alternative might result in benefits related to higher future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.

1eMack. Require VMS for limited access mackerel vessels. (PREFERRED)

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative. VMS is particularly useful to monitor area-based management measures but area-based measures are not currently or proposed to be used for management of the managed species. Requiring a VMS unit is helpful for enforcement purposes, but if implemented without any of the other alternatives proposed in this action, would not be likely to have any substantial impacts to the managed resources compared to the no-action alternative. Alternative Sets 7 and 8 involve area-based management measures related to RH/S catch, which could reduce effort and catch of mackerel, so to some degree VMS could indirectly facilitate a positive impact for the managed species. However, there is no information to suggest that current mackerel catches are causing sustainability problems. Alternative 1fMack involves catch reporting through VMS and additional impacts are discussed below for that alternative related to improved catch monitoring.
2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A potentially positive impact would be expected compared to the no-action alternative. No direct impacts compared to the no-action alternative would be expected (including for RH/S) just by having VMS operating on a vessel. However, if area based management is selected in this amendment (Alternative Sets 7 and 8), VMS could be useful as a complementary compliance/enforcement tool, and area-based closures could reduce mackerel catch and effort and thus reduce non-target impacts. VMS also can be used as a tool for fleet communication to voluntarily avoid localized RH/S aggregations. In addition, alternative 1fMack involves catch reporting through VMS and additional impacts are discussed below for that alternative related to improved catch monitoring.

3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative. Selected alone, requiring a VMS unit for all limited access mackerel vessels is unlikely to change fishing effort. Therefore, no impacts are expected compared to the no-action alternative. Even if VMS is used in conjunction with area-based closures that reduce overall effort, since the majority of mackerel landings are made with mid-water gear that should have minimal impact on the bottom, negligible habitat impacts would be expected.

4. **Protected Resources**

A potentially positive impact would be expected compared to the no-action alternative. No direct protected resources impacts compared to the no-action alternative would be expected just by having VMS operating on a vessel. However, if area based management is selected in this amendment (Alternative Sets 7 and 8), VMS could be useful as a complementary compliance/enforcement tool, and area-based closures could reduce mackerel catch and effort and thus reduce protected resource impacts. VMS also can be used as a tool for fleet communication to voluntarily avoid localized protected resource aggregations.

5. **Human Communities**

The impacts for human communities appear mixed with uncertain net impacts compared to the no-action alternative. On one hand costs to fishery participants would increase. Of the approximately 2,200 vessels that had open access mackerel permits at some point in 2011, 684 were not also required to have VMS related to permit requirements for other northeast region fisheries. While not all of these vessels will qualify for mackerel limited access (being implemented currently), 684 is a reasonable estimate for the upper bound on how many vessels could have to buy new VMS units. Amendment 11 estimated that around 400 vessels might qualify for limited access. If one maintains the ratio of open access boats (684/2,200 = 31%) that would need VMS for the 400 likely qualifiers for mackerel limited access, 31% of 400 equals 124 vessels that would actually need new VMS units. Since limited access qualifiers, being
more active participants, may be more likely to have other permits that require VMS, the likely number may be somewhat lower than 124. Until the final number of qualifiers is determined it is not possible to further quantify the number of vessels that may require VMS units under this provision. The costs to equip a vessel with a VMS are approximately $1,700-$3,300, with operating costs for the unit of approximately $40-$100 per month. In addition, the vessel would need a constant power source such as a generator, or access to dockside energy, which would add to the costs. In summary, requiring a VMS for mackerel limited access vessels will likely have a negative impact on human communities compared to the no-action alternative.

On the other hand to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative compared to the no-action alternative might result in benefits related to higher future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
1eLong. Require VMS for longfin squid/butterfish moratorium vessels (see 1f and 1g below). (PREFERRED)

1. Managed Resources Impacts (mackerel, Illx, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative. VMS is particularly useful to monitor area-based management measures but area-based measures are not currently or proposed to be used for management of the managed species. Requiring a VMS unit is helpful for enforcement purposes, but if implemented without any of the other alternatives proposed in this action, would not be likely to have any impacts to the managed resources compared to the no-action alternative. Alternative Sets 7 and 8 involve area-based management measures related to RH/S catch, and could reduce effort and catch of longfin squid (and butterfish indirectly), so to some degree VMS could indirectly facilitate a positive impact for longfin squid and butterfish. However, there is no information to suggest that current longfin squid or butterfish catches are causing sustainability problems. Alternative 1fLong involves catch reporting through VMS and additional impacts are discussed below for that alternative related to improved catch monitoring.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially positive impact would be expected compared to the no-action alternative. No direct impacts compared to the no-action alternative would be expected (including for RH/S) just by having VMS operating on a vessel. However, if area based management is selected in this amendment (Alternative Sets 7 and 8), VMS could be useful as a complementary compliance/enforcement tool, and area-based closures could reduce longfin squid and/or butterfish catch and effort. VMS also can be used as a tool for fleet communication to voluntarily avoid localized RH/S aggregations. In addition, alternative 1fLong involves catch reporting through VMS and additional impacts are discussed below for that alternative related to improved catch monitoring.

3. Habitat Impacts Including EFH

A potentially positive impact would be expected compared to the no-action alternative. Selected alone, requiring a VMS unit for all limited access longfin squid/butterfish moratorium vessels is unlikely to change fishing effort. However, if area based management is selected in this amendment (Alternative Sets 7 and 8), VMS could be useful as a complementary compliance/enforcement tool, and area-based closures could reduce longfin squid effort which would lead to positive habitat impacts.

4. Protected Resources

A potentially positive impact would be expected compared to the no-action alternative. No direct protected resources impacts compared to the no-action alternative would be expected just by having VMS operating on a vessel. However, if area based management is selected in this
amendment (Alternative Sets 7 and 8), VMS could be useful as a complementary compliance/enforcement tool, and area-based closures could reduce longfin squid catch and effort and thus reduce protected resource impacts. VMS also can be used as a tool for fleet communication to voluntarily avoid localized protected resource aggregations.

5. Human Communities

The impacts for human communities appear mixed with uncertain net impacts compared to the no-action alternative. On one hand costs to fishery participants would increase. Of the 351 vessels that had longfin squid/butterfish moratorium permits in 2011, only 7 were not also required to have VMS related to permit requirements for other northeast region fisheries and would have to equip their vessel with VMS under this provision. The costs to equip a vessel with a VMS are approximately $1,700-$3,300, with operating costs for the unit of approximately $40-$100 per month. In addition, the vessel would need a constant power source such as a generator, or access to dockside energy, which would add to the costs. In summary, requiring a VMS for limited access longfin squid/butterfish moratorium vessels will likely have a negative impact on human communities compared to the no-action alternative.

On the other hand to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative compared to the no-action alternative might result in benefits related to higher future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.

1fMack. Require daily VMS reporting of catch by limited access mackerel vessels so as to facilitate monitoring (directed and/or unintended catch) and cross checking with other data sources. Requiring VMS (see 1eMack above) and requiring trip declarations (would be a prerequisite for this alternative. (PREFERRED)

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative. To the degree that more rapid reporting could be used to cross check dealer data to ensure that fishery closures (managed species) occur appropriately, there could be positive benefits to mackerel compared to the no-action alternative but such benefits are likely low because dealer data is the primary data source for landings tracking and there is no history of overages.
2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially low positive impact would be expected compared to the no-action alternative. To the degree that more rapid reporting could be used to cross check dealer data to ensure that fishery closures (due to catch of non-target species (including for RH/S)) occur appropriately, there could be positive benefits compared to the no-action alternative but such benefits are likely low because dealer data is the primary data source for landings tracking and there is no history of overages.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring VMS catch reporting for all limited access mackerel vessels is unlikely to change fishing effort. Therefore, no impacts are expected compared to the no-action alternative, especially since the majority of mackerel landings are made with mid-water gear which should have negligible impact on the bottom.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternatives. Requiring VMS catch reporting for all limited access mackerel vessels is unlikely to change fishing effort. Therefore, no impacts are expected compared to the no-action alternative.

5. Human Communities

The impacts for human communities appear mixed with uncertain net impacts compared to the no-action alternative. On one hand costs to fishery participants would increase. The cost of transmitting a catch report via VMS is $0.60 per transmission. There is a wide range of fishing activity toward mackerel so multiplying average days fished by $0.60 per day would not be illustrative for many vessels. Most vessels impacted by this provision would know how many days they fished for mackerel in a year so they can just multiply $0.60 by days they would be likely to declare into mackerel fishing to determine an annual impact on their business. For example, if a vessel were to declare into the mackerel fishery for 100 days in a year, then they would have $60 in annual costs associated with this provision. Also, each VMS report is estimated to take 5 minutes to complete.

On the other hand to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative compared to the no-action alternative might result in benefits related to higher future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable.
Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.

1fLong. Require daily VMS reporting of catch by longfin squid moratorium permits so as to facilitate monitoring (directed and/or unintended catch) and cross checking with other data sources. Requiring VMS (see 1eLong above) and requiring trip declarations would be a prerequisite for this alternative. (PREFERRED)

1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

A potentially low positive impact would be expected compared to the no-action alternative. To the degree that more rapid reporting could be used to cross check dealer data to ensure that fishery closures (managed species) occur appropriately, there could be positive benefits to longfin squid compared to the no-action alternative but such benefits are likely low because dealer data is the primary data source for landings tracking and there is no history of recent annual overages in this fishery (the annual quota is divided into 3 seasonal trimesters and there have been some relatively small seasonal overages).

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A potentially low positive impact would be expected compared to the no-action alternative. To the degree that more rapid reporting could be used to cross check dealer data to ensure that fishery closures (due to catch of non-target species(including for RH/S)) occur appropriately, there could be positive benefits compared to the no-action alternative but such benefits are likely low because dealer data is the primary data source for landings tracking and there is no history of overages. Area based monitoring for RH/S is proposed in other alternatives in this action (Alternative Set 7), and VMS is useful for enforcement of area-based management.

3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring VMS catch reporting for all limited access longfin squid/butterfish moratorium vessels is unlikely to change fishing effort.
4. **Protected Resources**

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring VMS catch reporting for all limited access longfin squid/butterfish moratorium vessels is unlikely to change fishing effort. Therefore, no impacts are expected compared to the no-action alternative.

5. **Human Communities**

The impacts for human communities appear mixed with uncertain net impacts compared to the no-action alternative. On one hand costs to fishery participants would increase. The cost of transmitting a catch report via VMS is $0.60 per transmission. There is a wide range of fishing activity toward longfin squid so multiplying average days fished by $0.60 per day would not be illustrative for many vessels. Most vessels impacted by this provision would know how many days they fished for mackerel in a year so they can just multiply $0.60 by days they would be likely to declare into mackerel fishing to determine an annual impact on their business. For example, if a vessel were to declare into the longfin squid fishery for 100 days in a year, then they would have $60 in annual costs associated with this provision. Also, each VMS report is estimated to take 5 minutes to complete.

On the other hand to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative compared to the no-action alternative might result in benefits related to higher future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
IgMack. Require 6 hour pre-landing notification via VMS to land more than 20,000 pounds of mackerel, which could facilitate quota monitoring, enforcement, and/or portside monitoring. (PREFERRED)

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative (where none is required because there is no VMS). VMS pre-landing notifications could facilitate enforcement of landings limits and landings reporting. Impacts are low compared to the no-action alternative because there are no known issues with mackerel landing limits or mackerel reporting requirements being violated.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially positive impact would be expected compared to the no-action alternative. Pre-landings notifications could facilitate port-side sampling (see Alternative Set 4). Port side sampling could lead to better information on non-target interactions (including for RH/S) which could lead to better management of non-target species compared to the no-action alternative.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring a 6 hour pre-landing notification would not be expected to change effort.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. Compared to the no-action alternative, requiring a 6 hour pre-landing notification would not be expected to change effort so negligible impacts would be expected compared to the no-action alternative.

5. Human Communities

The impacts for human communities appear mixed with uncertain net impacts compared to the no-action alternative. On one hand costs to fishery participants would increase. The cost of transmitting a catch report via VMS is $0.60 per transmission. There is a wide range of fishing activity toward mackerel so multiplying average trips fished by $0.60 per trip would not be illustrative for many vessels. Most vessels impacted by this provision would know how many trips they fished for mackerel in a year so they can just multiply $0.60 by trips they would be likely to land mackerel to estimate an annual impact on their business. For example, if a vessel were to land over 20,000 pounds of mackerel for 50 trips in a year, then they would have $30 in annual costs associated with this provision. Also, each VMS report is estimated to take 5 minutes to complete.
On the other hand to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative compared to the no-action alternative might result in benefits related to higher future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
Longfin. Require 6 hour pre-landing notification via VMS to land more than 2,500 pounds of longfin squid, which could facilitate quota monitoring, enforcement, and/or portside monitoring.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative. VMS pre-landing notifications could facilitate enforcement of landings limits and landings reporting. Impacts are low compared to the no-action alternative because there are no known issues with longfin squid landing limits or longfin squid reporting requirements being violated.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially positive impact would be expected compared to the no-action alternative. Pre-landings notifications could facilitate port-side sampling (see Alternative Set 4). Port side sampling could lead to better information on non-target interactions (including for RH/S) which could lead to better management of non-target species compared to the no-action alternative.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring a 6 hour pre-landing notification would not be expected to change effort.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. Compared to the no-action alternative, requiring a 6 hour pre-landing notification would not be expected to change effort so negligible impacts would be expected compared to the no-action alternative.

5. Human Communities

The impacts for human communities appear mixed with uncertain net impacts compared to the no-action alternative. On one hand costs to fishery participants would increase. The cost of transmitting a catch report via VMS is $0.60 per transmission. There is a wide range of fishing activity toward longfin squid so multiplying average trips fished by $0.60 per trip would not be illustrative for many vessels. Most vessels impacted by this provision would know how many trips they fished for longfin squid in a year so they can just multiply $0.60 by trips they would be likely to land longfin squid to estimate an annual impact on their business. For example, if a vessel were to land over 2,500 pounds of longfin squid for 50 trips in a year, then they would have $30 in annual costs associated with this provision. Also, each VMS report is estimated to take 5 minutes to complete.

On the other hand to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the
managed resources and/or RH/S, then choosing this alternative compared to the no-action alternative might result in benefits related to higher future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.

Alternative Set 1 Summary - Additional Vessel Reporting Measures

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

All of the action alternatives are expected to have some low incremental managed-resource benefits related to better monitoring and observer placement.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

All of the action alternatives are expected to have some low incremental non-target benefits related to better monitoring and observer placement. Requiring pre-departure notice for mackerel trips (1d48 and 1d72) may be relatively more important in order to generally facilitate effective observer deployment and data collection.

3. Habitat Impacts Including EFH

None of the action alternatives are expected to impact habitat.

4. Protected Resources

Most of the alternatives are not expected to impact protected resources. Requiring pre-departure notice for mackerel trips (1d48 and 1d72) may be relatively more important in order to generally facilitate effective observer deployment and data collection.

5. Human Communities

Human community impacts are mixed depending on which interest group is considered. Commercial fishing interests would incur relatively low costs related to most of the alternatives being considered. For vessels that do not have VMS units (a minority of the fleet) those costs are moderate related to alternatives that would require VMS (1eMack and 1eLong). The interested public would benefit to a modest degree primarily to the extent that better monitoring could lead to better RH/S management.
7.2 Alternative Set 2 – Additional Dealer Reporting Measures

Statement of Problem/Need for Action:

The current suite of reporting and monitoring requirements may be insufficient to precisely estimate RH/S catch. Also, practices on how landing weights are determined are not standardized.

Background:

The measures in this Alternative Set would (alone and/or in combination with other alternatives) increase reporting and/or monitoring with the overall goal of improving the precision of RH/S catch estimates. While some of the focus may appear to be on mackerel and/or longfin squid general reporting compared to just RH/S in those fisheries, because extrapolations are often made based on total landings, accurate monitoring of the target species can be as important as determining the encounter rates of RH/S.

NOTE ON COMBINATIONS: Most of the Alternative Set 2 action alternatives could be implemented individually or collectively. However, 2c and 2d (weighing mackerel) would be mutually exclusive – only one would be chosen if either. Likewise, 2e and 2f (weighing longfin squid) would be mutually exclusive – only one would be chosen if either. 2g (dealers can use volume to weight conversions) would modify 2c, 2d, 2e, or 2f so 2g could only be chosen if at least one of those four alternatives was also chosen.

When comparing alternatives relative to the mackerel fishery or the longfin squid fishery, the mackerel alternatives are likely to have a greater positive impact on RH/S because substantially more RH/S appear to be caught in the mackerel fishery, but it is not possible to quantify the differential in potential benefits.

2a. No-action

If this alternative is selected, then no measures from Alternative Set 2 would be implemented and the existing reporting measures (as described in section 5.2) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below. While this section focuses on incremental impacts, cumulative impacts are discussed in Section 8.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A low negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 2 would somewhat improve monitoring of the managed resources there would be some foregone benefits if the no-action alternative is chosen. Given there are no major reported issues with current landings monitoring of the managed species, impacts would be expected to be low.
2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 2 would improve monitoring of landed species, there would be some foregone benefits to non-target species (including for RH/S) if the no-action alternative is chosen because less information of the landings of those species would be available for future management decisions.

3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the action alternatives. Dealer reporting is not expected to impact habitat.

4. **Protected Resources**

Neutral or negligible impacts would be expected compared to the action alternatives. Dealer reporting is not expected to impact protected resources.

5. **Human Communities**

The impacts of the no-action alternative in comparison to the other alternatives for human communities appear mixed with uncertain net impacts. On one hand the costs to fishery participants of the additional reporting requirements would be avoided, which is a positive impact. These costs include the time for vessels to confirm landings, and scales for those dealers that do not currently have scales to weigh mackerel or squid.

On the other hand, to the extent that Alternative Set 2 alternatives lead to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing the no-action alternative in comparison to the other alternatives might result in foregone benefits.

These could include lost commercial revenues, lost recreational opportunities, lost cultural values for RH/S, and/or other lost non-market existence values (i.e. value related to the knowledge that these species are being conserved successfully) resulting from diminished stocks compared to optimally productive stocks. Due to the uncertainty about how the mackerel and longfin squid fisheries are impacting either the managed species or RH/S, these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
2b. Require federally permitted MSB dealers to obtain vessel representative confirmation of Standard Atlantic Fisheries Information System transaction records for mackerel landings over 20,000 lb, *Illex* landings over 10,000 lb, and longfin squid landings over 2,500 lb.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A low positive impact would be expected compared to the no-action alternative. Accurate landings data is important to ensure that quotas are not exceeded and errors do exist in the dealer database. Given there are no major reported issues with current monitoring of the managed species, impacts would be expected to be low.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A low positive impact would be expected compared to the no-action alternative. Accurate landings data is important to ensure that quotas are not exceeded and errors do exist in the dealer database. To the extent that landings data informs mortality caps, accurate landings data can also be important for managing catch of non-target species (including for RH/S).

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring landings data confirmations would not be expected to change effort.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring landings data confirmations would not be expected to change effort.

5. Human Communities

Potentially low positive impacts would be expected compared to the no-action alternative. Since internet access is pervasive in the Mid-Atlantic and New England, either vessel owners or their representative should be able to make an internet-based confirmation of dealer transactions records without substantial cost. Ensuring dealer records are accurate could help vessels if dealer records are used in the future for access controls/requalification. It is estimated that the online checking process would take about 5-10 minutes for each vessel per week and about 15 minutes per week for dealers to confirm and report that vessels had checked their landings. Some industry members have voiced concern that this puts vessels in a potentially awkward position of checking up on their customers, which could make business relationships more difficult to build and maintain.
2c. Require that federally permitted MSB dealers weigh all landings related to mackerel transactions over 20,000 pounds. If dealers do not sort by species, they would need to document in dealer applications how they estimate relative compositions of a mixed catch.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A low positive impact would be expected compared to the no-action alternative. Accurate landings data is important to ensure that quotas are not exceeded but there is no indication that any quota overages have occurred recently. If dealers estimate the relative compositions of mixed catches consistently throughout the year then annual documentation of their methods should provide good information on their procedures. If dealers estimate the relative compositions of mixed catches differently throughout the year then transaction by transaction documentation of their methods would provide good information on their procedures. Getting good information of these procedures would help evaluate the accuracy of landings data (for managed or non-target species).

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A low positive impact would be expected compared to the no-action alternative. Accurate landings data is important to ensure that quotas are not exceeded. To the extent that landings data informs mortality caps, accurate landings data can also be important for managing catch of non-target species (including for RH/S). If dealers estimate the relative compositions of mixed catches consistently throughout the year then annual documentation of their methods should provide good information on their procedures. If dealers estimate the relative compositions of mixed catches differently throughout the year then transaction by transaction documentation of their methods would provide good information on their procedures. Getting good information of these procedures would help evaluate the accuracy of landings data (for managed or non-target species).

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring dealers to weigh all catches would not be expected to change effort.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring dealers to weigh all catches would not be expected to change effort.

5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. Economic impacts would likely be varied among dealers. Some dealers currently weigh all
landings in some manner and impacts for them would be negligible. While a complete survey of all dealers is not available, discussions with NMFS port agents and MSB Advisory Panel members suggest that around half of the 107 dealers who purchased at least 10,000 pounds of mackerel or longfin squid 2006-2010 currently weigh their purchases, including many of the highest volume dealers. So around 54 dealers with substantial purchases would need to alter their practices, including potentially purchasing scales. Smaller dealers also are mixed in terms of weighing MSB purchases, but at smaller quantities relatively inexpensive scales should suffice.

The cost of scales can vary dramatically. The use of an already existing truck scale can cost as little as $10, but the distance to reach one may make their use impracticable. Installation of a truck scale in an easily-accessible port can cost more than $100,000, depending on the area in which the scale will be placed. Not all dealers use trucks in the transport of fish however, and water weight can impact the accuracy of measurements. Floor scales handling up to 20,000 pounds cost $3,000-$5,000 while floor scales that can weigh up to 100,000 pounds cost $13,000-$17,000. Hopper scales can have multiple or single hoppers, and weigh fish as they flow through the scale. For precise estimates the water needs to be completely separated from the fish before use. Hopper scale costs can range from $20,000 to $50,000 per scale, and newer models are now being produced that can be used on vessels at sea. Smaller scales costing several hundred dollars may be purchased but may mean that additional time is required to batch-weigh a product.

Requiring dealers to documents how they estimate the relative compositions of a mixed catch in the annual dealer application should have negligible impacts.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
2d. Require that federally permitted MSB dealers weigh all landings related to mackerel transactions over 20,000 pounds. If dealers do not sort by species, they would need to document with each transaction how they estimated the relative composition of a mixed catch. (PREFERRED)

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A low positive impact would be expected compared to the no-action alternative. Accurate landings data is important to ensure that quotas are not exceeded but there is no indication that any quota overages have occurred recently. If dealers estimate the relative compositions of mixed catches consistently throughout the year then annual documentation of their methods should provide good information on their procedures. If dealers estimate the relative compositions of mixed catches differently throughout the year then transaction by transaction documentation of their methods would provide good information on their procedures. Getting good information of these procedures would help evaluate the accuracy of landings data (for managed or non-target species).

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A low positive impact would be expected compared to the no-action alternative. Accurate landings data is important to ensure that quotas are not exceeded. To the extent that landings data informs mortality caps, accurate landings data can also be important for managing catch of non-target species (including for RH/S). If dealers estimate the relative compositions of mixed catches consistently throughout the year then annual documentation of their methods should provide good information on their procedures. If dealers estimate the relative compositions of mixed catches differently throughout the year then transaction by transaction documentation of their methods would provide good information on their procedures. Getting good information of these procedures would help evaluate the accuracy of landings data (for managed or non-target species).

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring dealers to weigh all catches would not be expected to change effort.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring dealers to weigh all catches would not be expected to change effort.
5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. Economic impacts would likely be varied among dealers. Some dealers currently weigh all landings in some manner and impacts for them would be negligible. While a complete survey of all dealers is not available, discussions with NMFS port agents and MSB Advisory Panel members suggest that around half of the 107 dealers who purchased at least 10,000 pound of mackerel or longfin squid 2006-2010 currently weigh their purchases, including many of the highest volume dealers. So around 54 dealers with substantial purchases would need to alter their practices, including potentially purchasing scales. Smaller dealers also are mixed in terms of weighing MSB purchases, but at smaller quantities relatively inexpensive scales should suffice.

The cost of scales can vary dramatically. The use of an already existing truck scale can cost as little as $10, but the distance to reach one may make their use impracticable. Installation of a truck scale in an easily-accessible port can cost more than $100,000, depending on the area in which the scale will be placed. Not all dealers use trucks in the transport of fish however, and water weight can impact the accuracy of measurements. Floor scales handling up to 20,000 pounds cost $3,000-$5,000 while floor scales that can weigh up to 100,000 pounds cost $13,000-$17,000. Hopper scales can have multiple or single hoppers, and weigh fish as they flow through the scale. For precise estimates the water needs to be completely separated from the fish before use. Hopper scale costs can range from $20,000 to $50,000 per scale, and newer models are now being produced that can be used on vessels at sea. Smaller scales costing several hundred dollars may be purchased but may mean that additional time is required to batch-weigh a product.

This alternative would also require documenting how the relative composition of a mixed catch is determined for each transaction, which could require 2-3 minutes for each transaction. From 2006-2010, 25 dealers averaged 14 mackerel transactions a year over 20,000 pounds, though some made only a few and others made much more than the average.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
2e. Require that federally permitted MSB dealers **weigh** all landings related to longfin squid transactions over 2,500 pounds. If dealers do not sort by species, they would need to document in dealer applications how they estimate relative compositions of a mixed catch.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A low positive impact would be expected compared to the no-action alternative. Accurate landings data is important to ensure that quotas are not exceeded but there is no indication that any quota overages have occurred recently. If dealers estimate the relative compositions of mixed catches consistently throughout the year then annual documentation of their methods should provide good information on their procedures. If dealers estimate the relative compositions of mixed catches differently throughout the year then transaction by transaction documentation of their methods would provide good information on their procedures. Getting good information of these procedures would help evaluate the accuracy of landings data (for managed or non-target species).

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A low positive impact would be expected compared to the no-action alternative. Accurate landings data is important to ensure that quotas are not exceeded. To the extent that landings data informs mortality caps, accurate landings data can also be important for managing catch of non-target species (including for RH/S). If dealers estimate the relative compositions of mixed catches consistently throughout the year then annual documentation of their methods should provide good information on their procedures. If dealers estimate the relative compositions of mixed catches differently throughout the year then transaction by transaction documentation of their methods would provide good information on their procedures. Getting good information of these procedures would help evaluate the accuracy of landings data (for managed or non-target species).

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring dealers to weigh all catches would not be expected to change effort.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring dealers to weigh all catches would not be expected to change effort.
5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. Economic impacts would likely be varied among dealers. Some dealers currently weigh all landings in some manner and impacts for them would be negligible. While a complete survey of all dealers is not available, discussions with NMFS port agents and MSB Advisory Panel members suggest that around half of the 107 dealers who purchased at least 10,000 pound of mackerel or longfin squid 2006-2010 currently weigh their purchases, including many of the highest volume dealers. So around 54 dealers with substantial purchases would need to alter their practices, including potentially purchasing scales. Smaller dealers also are mixed in terms of weighing MSB purchases, but at smaller quantities relatively inexpensive scales should suffice.

The cost of scales can vary dramatically. The use of an already existing truck scale can cost as little as $10, but the distance to reach one may make their use impracticable. Installation of a truck scale in an easily-accessible port can cost more than $100,000, depending on the area in which the scale will be placed. Not all dealers use trucks in the transport of fish however, and water weight can impact the accuracy of measurements. Floor scales handling up to 20,000 pounds cost $3,000-$5,000 while floor scales that can weigh up to 100,000 pounds cost $13,000-$17,000. Hopper scales can have multiple or single hoppers, and weigh fish as they flow through the scale. For precise estimates the water needs to be completely separated from the fish before use. Hopper scale costs can range from $20,000 to $50,000 per scale, and newer models are now being produced that can be used on vessels at sea. Smaller scales costing several hundred dollars may be purchased but may mean that additional time is required to batch-weigh a product.

Requiring dealers to document how they estimate the relative compositions of a mixed catch in the annual dealer application should have negligible impacts.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
2f. Require that federally permitted MSB dealers weigh all landings related to longfin squid transactions over 2,500 pounds. If dealers do not sort by species, they would need to document with each transaction how they estimate relative compositions of a mixed catch. (PREFERRED)

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A low positive impact would be expected compared to the no-action alternative. Accurate landings data is important to ensure that quotas are not exceeded but there is no indication that any quota overages have occurred recently. If dealers estimate the relative compositions of mixed catches consistently throughout the year then annual documentation of their methods should provide good information on their procedures. If dealers estimate the relative compositions of mixed catches differently throughout the year then transaction by transaction documentation of their methods would provide good information on their procedures. Getting good information of these procedures would help evaluate the accuracy of landings data (for managed or non-target species).

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A low positive impact would be expected compared to the no-action alternative. Accurate landings data is important to ensure that quotas are not exceeded. To the extent that landings data informs mortality caps, accurate landings data can also be important for managing catch of non-target species (including for RH/S). If dealers estimate the relative compositions of mixed catches consistently throughout the year then annual documentation of their methods should provide good information on their procedures. If dealers estimate the relative compositions of mixed catches differently throughout the year then transaction by transaction documentation of their methods would provide good information on their procedures. Getting good information of these procedures would help evaluate the accuracy of landings data (for managed or non-target species).

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring dealers to weigh all catches would not be expected to change effort.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring dealers to weigh all catches would not be expected to change effort.
5. **Human Communities**

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. Economic impacts would likely be varied among dealers. Some dealers currently weigh all landings in some manner and impacts for them would be negligible. While a complete survey of all dealers is not available, discussions with NMFS port agents and MSB Advisory Panel members suggest that around half of the 107 dealers who purchased at least 10,000 pound of mackerel or longfin squid 2006-2010 currently weigh their purchases, including many of the highest volume dealers. So around 54 dealers with substantial purchases would need to alter their practices, including potentially purchasing scales. Smaller dealers also are mixed in terms of weighing MSB purchases, but at smaller quantities relatively inexpensive scales should suffice.

The cost of scales can vary dramatically. The use of an already existing truck scale can cost as little as $10, but the distance to reach one may make their use impracticable. Installation of a truck scale in an easily-accessible port can cost more than $100,000, depending on the area in which the scale will be placed. Not all dealers use trucks in the transport of fish however, and water weight can impact the accuracy of measurements. Floor scales handling up to 20,000 pounds cost $3,000-$5,000 while floor scales that can weigh up to 100,000 pounds cost $13,000-$17,000. Hopper scales can have multiple or single hoppers, and weigh fish as they flow through the scale. For precise estimates the water needs to be completely separated from the fish before use. Hopper scale costs can range from $20,000 to $50,000 per scale, and newer models are now being produced that can be used on vessels at sea. Smaller scales costing several hundred dollars may be purchased but may mean that additional time is required to batch-weigh a product.

This alternative would also require documenting how the relative composition of a mixed catch is determined for each transaction, which could require 2-3 minutes for each transaction. From 2006-2010, 68 dealers averaged 25 longfin squid transactions over 2,500 pounds a year, though some made only a few and others made much more than the average.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
2g. Related to preferred requirements to weigh all fish (2d, 2f), allow dealers to use volume to weight conversions if they cannot weigh landings – they would need to identify their conversion methods in their dealer application and explain why they cannot weigh all landings. (PREFERRED)

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

Accurate monitoring is important to ensure quotas are not exceeded (directed or unintended) and avoid overfishing. Volume to weight conversions can be very accurate but are probably less accurate than weighing all fish. This alternative would only be selected if at least one alternative from 2c-2f were also chosen. Selecting this alternative in addition to 2c-2f likely renders each of those alternatives equivalent to the status quo, since dealers are probably unlikely to change the way they operate without a requirement to do so. The only required change would be the requirements to describe/document how dealers determine compositions of mixed landings. The impacts of documenting how dealers describe/document mixed landings compositions are discussed under each alternative 2c-2f above.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

Accurate monitoring is important to ensure quotas are not exceeded (directed or unintended (including for RH/S)) and avoid overfishing. Volume to weight conversions can be very accurate but are probably less accurate than weighing all fish. This alternative would only be selected if at least one alternative from 2c-2f were also chosen. Selecting this alternative in addition to 2c-2f likely renders each of those alternatives equivalent to the status quo, since dealers are probably unlikely to change the way they operate without a requirement to do so. The only required change would be the requirements to describe/document how dealers determine compositions of mixed landings. The impacts of documenting how dealers describe/document mixed landings compositions are discussed under each alternative 2c-2f above.

3. Habitat Impacts Including EFH

Selecting this alternative in addition to 2c-2f likely renders each of those alternatives equivalent to the status quo, since dealers are probably unlikely to change the way they operate without a requirement to do so. The only required change would be the requirements to describe/document how dealers determine compositions of mixed landings. The impacts of documenting how dealers describe/document mixed landings compositions are discussed under each alternative 2c-2f above.

4. Protected Resources

Selecting this alternative in addition to 2c-2f likely renders each of those alternatives equivalent to the status quo, since dealers are probably unlikely to change the way they operate without a
requirement to do so. The only required change would be the requirements to describe/document how dealers determine compositions of mixed landings. The impacts of documenting how dealers describe/document mixed landings compositions are discussed under each alternative 2c-2f above.

5. Human Communities

Selecting this alternative in addition to 2c-2f likely renders each of those alternatives equivalent to the status quo, since dealers are probably unlikely to change the way they operate without a requirement to do so. The only required change would be the requirements to describe/document how dealers determine compositions of mixed landings. The impacts of documenting how dealers describe/document mixed landings compositions are discussed under each alternative 2c-2f above.

Alternative Set 2 Summary - Additional Dealer Reporting Measures

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

All of the action alternatives are expected to have some low incremental managed-resource benefits related to better monitoring with the exception of 2g. 2g would essentially provide a loophole for weighing all catch, which is what is primarily considered in this Alternative Set.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

All of the action alternatives are expected to have some low incremental non-target benefits related to better monitoring with the exception of 2g. 2g would essentially provide a loophole for weighing all catch, which is what is primarily considered in this Alternative Set.

3. Habitat Impacts Including EFH

None of the action alternatives are expected to impact habitat.

4. Protected Resources

None of the action alternatives are expected to impact protected resources.

5. Human Communities

Human community impacts are mixed depending on which interest group is considered. Commercial dealers could incur moderate-to-higher additional costs if they needed to buy high volume scales to meet the "weigh all fish" requirements considered in this alternative set. Many dealers already weigh all of their catch however. The interested public would benefit to a modest degree primarily to the extent that better monitoring could lead to better RH/S management.
7.3 Alternative Set 3: Additional At-Sea Observation Optimization Measures

Statement of Problem/Need for Action:

The current suite of observer monitoring requirements may be insufficient to precisely estimate RH/S catch.

Background:

The measures in this Alternative Set would (alone and/or in combination with other alternatives) facilitate more accurate monitoring by observers with the overall goal of improving the precision of RH/S catch estimates. Each alternative addresses an aspect of observer coverage that potentially could be improved to ultimately lead to better RH/S estimates. Many of the alternatives deal with slippage, which is defined and described in Section 5.3.2.

NOTE ON COMBINATIONS: Many of the Alternative Set 3 action alternatives could be implemented individually or collectively. However, 3h (trip termination after 1 slipped haul) and 3i (trip termination after 2 slipped hauls) would be mutually exclusive – only one would be chosen if either. Likewise, 3k (fishery-wide slippage cap at 5 mackerel slippage events) and 3l (fishery-wide slippage cap at 10 mackerel slippage events) would be mutually exclusive – only one would be chosen if either. 3m (fishery-wide slippage cap at 5 longfin slippage events) and 3n (fishery-wide slippage cap at 10 longfin slippage events) are also mutually exclusive – only one would be chosen if either. 3p would replace fishery-wide slippage caps with vessel slippage caps and it would be expected that either 3p could be chosen or 3k-3n could be chosen (if any). Also, if 3j (slippage prohibition with exceptions) was chosen then 3f or 3g could not be selected (3f and 3g require all catch to be brought aboard but 3j provides some exceptions).

If alternatives 3f – 3p are selected for mackerel, they would also require the selection of Alternative 1d48 (48-hr pre-trip notification) or 1d72 (72-hr pre-trip notification). There is already a pre-trip notification requirement in effect for longfin squid moratorium permit holders.

Several alternatives in this Alternative set deal with slippage. As described in Section 5.3, even infrequent slippage has the potential to bias observer data in that the observed data would represent a subset of actual fishing behavior that does not include the discards related to slippage. From 2006-2010 approximately 9% (383 of 4186 or 77 per year) of hauls on observed longfin squid trips (trips that caught 50% or more longfin squid or at least 10,000 pounds longfin squid) and 26% (73 of 277 or 15 per year) of hauls on observed mackerel trips (trips that caught 50% or more mackerel or at least 100,000 pounds mackerel) had some unobserved catch. Catch may be unobserved for a variety of reasons, for example transfer to another vessel without an observer, observer not on station, or haul slipped (dumped) in the water. The above numbers would thus be an upper bound on slippage events.

If the ratios described above hold and higher observer coverages rates are implemented for any of these fisheries, the number of unobserved hauls could be much higher. Recent observer rates have been around 5%-10%.
When comparing alternatives relative to the mackerel fishery or the longfin squid fishery, the mackerel alternatives are likely to have a greater positive impact on RH/S because substantially more RH/S appear to be caught in the mackerel fishery, but it is not possible to quantify the differential in potential benefits.

3a. No-action

If this alternative is selected, then no measures from Alternative Set 3 would be implemented and the existing monitoring measures (as described in section 5.3) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below. While this section focuses on incremental impacts, cumulative impacts are discussed in Section 8.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A low negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 3 (assisting observers, haul-back notice, dual coverage on pair trawl operations, and minimizing slippage) could improve monitoring of discards of the managed resources there would be some foregone benefits if the no-action alternative is chosen, especially for butterfish since discards account for a large portion of butterfish mortality. Quality observer data is critical for evaluating and implementing potential measures to minimize discards. Since to some degree observer assistance, haul-back notice, and dual coverage on pair trawl operations already occur, and discards are not substantial for mackerel, *Illex*, or longfin squid, the potentially forgone benefits (better observer data) are likely low.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 3 (assisting observers, dual coverage on pair trawl operations, and minimizing slippage) would improve at-sea monitoring, there would be foregone benefits to non-target species including RH/S if the no-action alternative is chosen because less information on the catch and discards of those species would be available for future management decisions. Quality observer data is critical for evaluating and implementing potential measures to minimize discards. To some degree observer assistance, haul-back notice, and dual coverage on pair trawl operations already occur so the forgone benefits (better observer data) related to any one of those may be small but collectively such measures could provide higher benefits. If the no-action is selected, those benefits would be forgone. Regarding the issue of slippage (dumping net contents prior to observation), while a small percentage of hauls are currently slipped under the status quo, if the hauls that are slipped contain relevant non-target species, the understanding of interactions with non-target species will be biased.

While information on slippage is hard to come by, there is information on unobserved catch based on analysis described in section 6.3. The analyzed observed mackerel trips included 12 on average for each year 2006-2010 and 26% (about 15/year) had hauls with unobserved catch. The analyzed observed longfin trips included 83 on average for each year 2006-2010 and 9% (about 75/year) had hauls with unobserved catch. Hauls may be unobserved for a variety of
reasons, for example transfer to another vessel without an observer, observer not on station, haul slipped (dumped) in the water, etc. While the number of true slippages on observed vessels is likely low, the concern is that a relatively low number of events could bias the observer data.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the action alternatives. At-sea observing is not expected to impact habitat.

4. Protected Resources

A low negative impact would be expected compared to the action alternatives. While at-sea observing is important for determining protected resources interactions, the action alternatives being considered are mostly specific to improving data collection on RH/S and should not substantively impact protected resources. Some benefits from generally assisting observers (observers could focus on technical aspects of documenting protected resource interactions) might be foregone but to some degree observer assistance, haul-back notice, and dual coverage on pair trawl operations already occur so the foregone benefits (better observer data) would be low, especially since the measures are not geared toward protected resources.

5. Human Communities

The impacts of the no-action alternative in comparison to the other alternatives for human communities appear mixed with uncertain net impacts. On one hand the costs to fishery participants of the additional monitoring requirements would be avoided, which is a positive impact. These avoided costs include the time required for vessel representatives to assist observers (3b, 3c), time required to complete slippage/released catch affidavits and possible postage cost for submitting the affidavits to NMFS (3e, 3j), revenue loss associated with trip termination due to slippage events (3h, 3i, 3k-3p), and the potential safety issues that may occur if vessels haul catch aboard in unsafe conditions rather than slip a catch related to safety concerns (3f-3p). Since to some degree observer assistance, haul-back notice, and dual coverage on pair trawl operations already occur, costs related to these measures should be low.

On the other hand, to the extent that Alternative Set 3 alternatives lead to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing the no-action alternative in comparison to the other alternatives might result in foregone benefits.

These could include lost commercial revenues, lost recreational opportunities, lost cultural values for RH/S, and/or other lost non-market existence values (i.e. value related to the knowledge that these species are being conserved successfully) resulting from diminished stocks compared to optimally productive stocks. Due to the uncertainty about how the mackerel and longfin squid fisheries are impacting either the managed species or RH/S, these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
3b. Require the following reasonable assistance measures: provision of a safe sampling station; help with measuring decks, codends, and holding bins; help with fish collection; and help with basket sample collection by crew on vessels with mackerel limited access and/or longfin squid/Butterfish moratorium permits. Requirements can be modified via the annual specifications process.

(PREFERRED)

Note: Vessel crews often assist with these tasks already.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A low positive impact would be expected compared to the no-action alternative. Such assistance could help improve observer data by allowing the observer to focus on technical aspects of observing such as species identification, weighing, measuring, etc. To the degree that such data is used to better minimize and/or account for discards (good accounting for discards can help avoid overfishing), there could be positive impacts to the managed species. Impacts are low because many vessels already provide this kind of assistance, but codifying this requirement will help observers with vessels that are not as cooperative.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A low positive impact would be expected compared to the no-action alternative. Such assistance could help improve observer data by allowing the observer to focus on technical aspects of observing such as species identification, weighing, measuring, etc. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Impacts are low because many vessels already provide this kind of assistance, but codifying this requirement will help observers with vessels that are not as cooperative.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring vessels to provide the specified assistance would not be expected to change effort.

4. Protected Resources

A low positive impact would be expected compared to the no-action alternative. Such assistance could help improve observer data by allowing the observer to focus on technical aspects of observing such as species identification, weighing, measuring, etc. Impacts are low because many vessels already provide this kind of assistance, but codifying this requirement will help observers with vessels that are not as cooperative.
5. **Human Communities**

Neutral or negligible impacts would be expected compared to the no-action alternative. Many vessels provide this kind of assistance already and it would not be expected to be a major impact for those that do not. It is expected negligible crew time would be involved.

3c. **Require vessel operators to provide observers notice when pumping/haul-back occurs on vessels with mackerel limited access and/or longfin squid moratorium permits. Requirements can be modified via the annual specifications process.**

(PREFERRED)

Note: Vessel crews often assist with these tasks already.

1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

A low positive impact would be expected compared to the no-action alternative. Such assistance in not missing hauls ensures that all catch from an observed trip is observed and sampled to determine discards. To the degree that such data is used to better minimize and/or account for discards (good accounting for discards can help avoid overfishing), there could be positive impacts to the managed species. Impacts are low because many vessels already provide this kind of assistance, but codifying this requirement will help observers with vessels that are not as cooperative.

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A low positive impact would be expected compared to the no-action alternative. Such assistance in not missing hauls ensures that all catch from an observed trip is observed and sampled to determine non-target interactions. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Impacts are low because many vessels already provide this kind of assistance, but codifying this requirement will help observers with vessels that are not as cooperative.

3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative. Ensuring that observers do not miss hauls is unlikely to change effort levels.
4. **Protected Resources**

A low positive impact would be expected compared to the no-action alternative. Such assistance in not missing hauls ensures that all catch from an observed trip is observed and sampled to determine protected resource interactions. To the degree that such data is used to better minimize protected resource interactions, there could be positive impacts. Impacts are low because many vessels already provide this kind of assistance, but codifying this requirement will help observers with vessels that are not as cooperative.

5. **Human Communities**

Neutral or negligible impacts would be expected compared to the no-action alternative. Many vessels provide this kind of assistance already and it would not be expected to be a major impact for those that do not. It is expected negligible crew time would be involved.

3d. **When observers are deployed on trips involving more than one vessel, observers would be required on any vessel taking on fish wherever/whenever possible on vessels with mackerel limited access and/or longfin squid moratorium permits. Requirements can be modified via the annual specifications process.** (PREFERRED)

Note: The observer program usually does this already.

1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

A low positive impact would be expected compared to the no-action alternative. Not missing hauls ensures that all catch from an observed trip is observed and sampled to determine discards. To the degree that such data is used to better minimize and/or account for discards (good accounting for discards can help avoid overfishing), there could be positive impacts to the managed species. Impacts are low because the observer program usually does this already.

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A low positive impact would be expected compared to the no-action alternative. If both vessels are receiving fish, having observers on both vessels ensures that all catch from the pair trawling trip is observed and sampled to determine non-target interactions. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. While the observer program typically assigns two observers to pair trawling operations (pers Com Amy VanAtten), this alternative provides the observer program with an additional incentive to do so. Impacts are low because the observer program usually does this already.
3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring the observer program to deploy observes on both vessels during pair trawl operations whenever possible would not be expected to change effort.

4. Protected Resources

A low positive impact would be expected compared to the no-action alternative. If both vessels are receiving fish, having observers on both vessels ensures that all catch from the pair trawling trip is observed and sampled to determine protected resource interactions. To the degree that such data is used to better minimize interactions, there could be positive impacts. Impacts are low because the observer program usually does this already.

5. Human Communities

Neutral or negligible impacts would be expected compared to the no-action alternative. Many paired vessels take observers out on both vessels already and this alternative does not have any observer funding requirements.

3e. On vessels with mackerel limited access and/or longfin squid moratorium permits, require slippage reports - “Released Catch Affidavits” from captains on observed trips if they slip a haul.

Selected alone, this alternative provides another account of slippage but does not do anything to deter slippage. This alternative would be used to augment and cross check the data collected by observers to develop a better understanding of slippage events.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A low positive impact would be expected compared to the no-action alternative. This alternative would be used to improve the quality of data collected by observers by developing a better understanding of slippage events. To the degree that such data is used in the future to reduce slippage and gain better information on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A low positive impact would be expected compared to the no-action alternative. This alternative would be used to improve the quality of data collected by observers by developing a better
understanding of slippage events. To the degree that such data is used in the future to reduce slippage and gain better information on non-target interactions (including for RH/S), there could be positive impacts to the non-target species if interactions are later reduced based on that information.

If a “trip termination because of slippage” alternative was selected (see below), the slippage reports could also be used by enforcement to determine if vessels had terminated appropriately after reaching the trigger number of slippage events. Minimizing slippage should result in better data for non-target species.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Ensuring that observers do not miss hauls is unlikely to change effort levels.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. There is no indication that protected resource interactions are being missed because of discards that are not brought aboard a vessel but theoretically, making sure all catch is observed could lessen the chance of observers missing protected species interactions.

5. Human Communities

Neutral or negligible impacts would be expected compared to the no-action alternative. Vessel captains would have to fill out a form explaining the reason for any slipped hauls, which appear to be relatively infrequent compared to the total number of observed hauls. The slipped haul form should take around 5 minutes to complete for each slippage event.
3f. Prohibit vessels with Mackerel limited access permits that have notified for a mackerel trip and are carrying an observer from releasing any discards before they have been brought aboard for sampling by the observer.

1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

A low positive impact would be expected compared to the no-action alternative. To the degree that such data is used in the future to gain better information on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information. Since discards of managed species on mackerel trips is not a major issue, impacts should be low. While many vessels already do this, codifying this requirement will help observers with vessels that are not as cooperative.

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A positive impact would be expected compared to the no-action alternative. This alternative would be used to improve the quality of data collected by observers by requiring all fish that will be discarded be brought aboard for sampling first to develop complete information about all species in the mackerel fishery. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. While many vessels already do this, codifying this requirement will help observers with vessels that are not as cooperative. Given that many non-target species interaction events are rare and large, even infrequent slippage could confound catch estimates made without observing all hauls.

3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative. Prohibiting discarding before observation would not be expected to change effort.

4. **Protected Resources**

Neutral or negligible impacts would be expected compared to the no-action alternative. Prohibiting discarding before observation would not be expected to change effort and there is no indication that protected resource interactions are being missed because of discards that are not brought aboard a vessel but theoretically, making sure all catch is observed could lessen the chance of observers missing protected species interactions.
5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. Some fishing time may be lost because nets have to be fully brought aboard after each haul. Also, this alternative could create safety problems if a vessel attempts to bring aboard a catch and/or net in dangerous conditions. The observer program reports that most vessels are already bringing all hauls aboard for sampling a majority of the time on a voluntary basis however.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
3g. Prohibit vessels with longfin squid moratorium permits that have notified for a longfin squid trip and are carrying an observer from releasing any discards before they have been brought aboard for sampling by the observer.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A positive impact would be expected compared to the no-action alternative. To the degree that such data is used in the future to gain better information on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low except for butterfish. Since discards are a major portion of butterfish mortality better discard information has a strong potential to improve data and management.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A positive impact would be expected compared to the no-action alternative. This alternative would be used to improve the quality of data collected by observers by requiring all fish that will be discarded be brought aboard for sampling first to develop complete information about all species in the longfin squid fishery. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. While many vessels already do this, codifying this requirement will help observers with vessels that are not as cooperative. Given that many non-target species interaction events are rare and large, even infrequent slippage could confound catch estimates made without observing all hauls.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Prohibiting discarding before observation would not be expected to change effort.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. Prohibiting discarding before observation would not be expected to change effort and there is no indication that protected resource interactions are currently being missed because of discards that are not brought aboard a vessel but theoretically, making sure all catch is observed could lessen the chance of observers missing protected species interactions.
5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. Some fishing time may be lost because nets have to be fully brought aboard after each haul. Also, this alternative could create safety problems if a vessel attempts to bring aboard a catch and/or net in dangerous conditions. The observer program reports that most vessels are already bringing all hauls aboard for sampling a majority of the time on a voluntary basis however.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.

3h. On vessels with mackerel limited access and/or longfin squid moratorium permits, require trip termination following 1 slipped haul on an observed trip so as to minimize slippage events.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A positive impact would be expected compared to the no-action alternative. To the degree that this alternative minimizes slippage and increases the quality of data on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low except for butterfish. Since discards are a major portion of butterfish mortality, better discard information has a strong potential to improve data and management.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A positive impact would be expected compared to the no-action alternative. This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip any hauls on an observed trip so that data can be obtained on the composition of all catches. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since some fish that are released when slipped may survive but are unlikely to survive if hauled aboard there may be some additional mortality on a haul by haul basis. Given that many non-target species interaction events are rare and large,
even infrequent slippage could confound catch estimates made without observing all hauls. While absolute numbers of slippage events are likely low, partly that could be just because of low observer coverage rates and the key point is that individual hauls on MSB trips can be quite large (more than 100,000 pounds per haul for mackerel and more than 20,000 per haul for longfin squid) so it doesn't take more than a few slipped hauls to potentially have a strong impact on overall catch estimates.

3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative. Even if some trip terminations occur, it is not expected that these would substantially change overall fishery effort especially since fishery participants may compensate by scheduling additional trips later. It would not matter if trips were terminated because of 1 or 2 slipped hauls because effort would not be expected to substantially change in either case so there are no habitat impacts.

4. **Protected Resources**

Neutral or negligible impacts would be expected compared to the no-action alternative. Even if some trip terminations occur, it is not expected that these would substantially change overall fishery effort especially since fishery participants may compensate by scheduling additional trips later. It would not matter if trips were terminated because of 1 or 2 slipped hauls because effort would not be expected to substantially change in either case so there are no protected resources impacts. Theoretically, making sure all catch is observed could lessen the chance of observers missing protected species interactions though this is not known to be a problem.

5. **Human Communities**

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. It is difficult to quantify the socio-economic impacts because participants are likely to have a wide variety of responses. Some vessels may just not slip where they would have previously, and the only extra cost is time for extra sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Since the vessel would have to return to port eventually, the cost is the forgone revenue on what would have been the rest of the trip. If termination occurs near what would have been the natural end of a trip the costs would be low. If termination occurs near the beginning on a trip then the costs could be high, but not knowable since the trip is terminated. However, when fishing is good, longfin landings can often exceed $30,000 per trip and mackerel landings can exceed $150,000 per trip.

Because of the impossibility of predicting fishery participant responses, the variety of trip types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify socio-economic impacts related to this alternative. However, analysis described above
concluded that the mackerel fishery averages 15 hauls a year with unobserved catch, which could theoretically trigger trip terminations. The same analysis found that the longfin squid fishery averaged 77 hauls per year with unobserved catch, which could trigger trip terminations. Due to the nature of the analysis these numbers would be upper bounds. Compared to 3i, this alternative would be expected to be more negative since 1 slipped haul would result in trip termination rather than 2 slipped hauls.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.

3i. On vessels with mackerel limited access and/or longfin squid moratorium permits, require trip termination following 2 slipped hauls on an observed trip so as to minimize slippage events.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A positive impact would be expected compared to the no-action alternative. To the degree that this alternative minimizes slippage and increases the quality of data on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low except for butterfish. Since discards are a major portion of butterfish mortality, better discard information has a strong potential to improve data and management.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A positive impact would be expected compared to the no-action alternative. This alternative would seek to discourage slippage events by requiring a vessel to terminate a trip if they slip any hauls on an observed trip so that data can be obtained on the composition of all catches. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since some fish that are released when slipped may survive but are unlikely to survive if hauled aboard there may be some additional mortality on a haul by haul basis. Given that many non-target species interaction events are rare and large, even infrequent slippage could confound catch estimates made without observing all hauls. While absolute numbers of slippage events are likely low, partly that could be just because of low observer coverage rates and the key point is that individual hauls on MSB trips can be quite
large (more than 100,000 pounds per haul for mackerel and more than 20,000 per haul for longfin squid) so it doesn't take more than a few slipped hauls to potentially have a strong impact on overall catch estimates.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Even if some trip terminations occur, it is not expected that these would substantially change overall fishery effort especially since fishery participants may compensate by scheduling additional trips later. It would not matter if trips were terminated because of 1 or 2 slipped hauls because effort would not be expected to substantially change in either case so there are no habitat impacts.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. Even if some trip terminations occur, it is not expected that these would substantially change overall fishery effort especially since fishery participants may compensate by scheduling additional trips later. It would not matter if trips were terminated because of 1 or 2 slipped hauls because effort would not be expected to substantially change in either case so there are no protected resource impacts. Theoretically, making sure all catch is observed could lessen the chance of observers missing protected species interactions though this is not known to be a problem.

5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. It is difficult to quantify the socio-economic impacts because participants are likely to have a wide variety of responses. Some vessels may just not slip where they would have previously, and the only extra cost is time for extra sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Since the vessel would have to return to port eventually, the cost is the forgone revenue on what would have been the rest of the trip. If termination occurs near what would have been the natural end of a trip the costs would be low. If termination occurs near the beginning on a trip then the costs could be high, but not knowable since the trip is terminated. However, when fishing is good, longfin landings can often exceed $30,000 per trip and mackerel landings can exceed $150,000 per trip.

Because of the impossibility of predicting fishery participant responses, the variety of trip types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify socio-economic impacts related to this alternative. However, analysis described above concluded that the mackerel fishery averages 15 hauls a year with unobserved catch, which could theoretically trigger trip terminations. The same analysis found that the longfin squid fishery averaged 77 hauls per year with unobserved catch, which could trigger trip terminations. Due to
the nature of the analysis these numbers would be upper bounds. Compared to 3h, this alternative would be expected to be less negative since 2 slipped hauls would result in trip termination rather than 1 slipped haul.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
3j. With the exceptions noted below, mackerel limited access and/or longfin squid moratorium permitted vessels that have notified the observer program of their intent to land over 2,500 pounds of longfin squid or over 20,000 pounds of mackerel and have been selected to carry an observer would be required to pump/haul aboard all fish from the net for inspection and sampling by the observer. Vessels that do not pump fish would be required to bring all fish aboard the vessel for inspection and sampling by the observer. Vessels would be prohibited from releasing fish from the net (slippage), transferring fish to another vessel (that is not carrying a NMFS-approved observer), or otherwise discarding fish at sea, unless the fish have first been brought aboard the vessel and made available for sampling and inspection by the observer.

Exceptions: 1) pumping the catch could compromise the safety of the vessel/crew
2) mechanical failure precludes bringing some or all of the catch aboard the vessel; or
3) spiny dogfish have clogged the pump and consequently prevent pumping of the rest of the catch.

If a net is released, including the exemptions above, the vessel operator would be required to complete and sign a Released Catch Affidavit providing information about where, when, and why the net was released, as well as a good-faith estimate of the total weight of fish caught on the tow and weight of fish released. Released Catch Affidavits must be submitted within 48 hours of completion of the trip. Exemptions and provisions of this measure can be modified via the annual specifications process.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A positive impact would be expected compared to the no-action alternative. To the degree that this alternative minimizes slippage and increases the quality of data on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low except for butterfish. Since discards are a major portion of butterfish mortality better discard information has a strong potential to improve data and management.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A positive impact would be expected compared to the no-action alternative. This alternative would seek to discourage slippage events so that data can be obtained on the composition of all catches. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since some fish that are released when slipped may survive but are unlikely to survive if hauled aboard there may be
some additional mortality on a haul by haul basis. Given that many non-target species interaction events are rare and large, even infrequent slippage could confound catch estimates made without observing all hauls. While absolute numbers of slippage events are likely low, partly that could be just because of low observer coverage rates and the key point is that individual hauls on MSB trips can be quite large (more than 100,000 pounds per haul for mackerel and more than 20,000 per haul for longfin squid) so it doesn't take more than a few slipped hauls to potentially have a strong impact on overall catch estimates.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Prohibiting discarding before observation or requiring released catch affidavits would not be expected to change effort.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. Prohibiting discarding before observation would not be expected to change effort and there is no indication that protected resource interactions are currently being missed because of discards that are not brought aboard a vessel. Theoretically, making sure all catch is observed could lessen the chance of observers missing protected species interactions though this is not known to be a problem.

5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a low negative impact would be expected compared to the no-action alternative. Vessel captains would have to fill out a form explaining the reason for any slipped hauls, which should take less than 5 minutes. Also, if slipping has been occurring frequently on observed trips for reasons other than the exceptions above then fishing time could be lost while net contents are brought aboard. Analysis described above concluded that the mackerel fishery averages 15 hauls a year with unobserved catch, which could theoretically trigger trip terminations. The same analysis found that the longfin squid fishery averaged 77 hauls per year with unobserved catch, which could trigger trip terminations. Due to the nature of the analysis these numbers would be upper bounds.

If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Since the vessel would have to return to port eventually, the cost is the forgone revenue on what would have been the rest of the trip. If termination occurs near what would have been the natural end of a trip the costs would be low. If termination occurs near the beginning on a trip then the costs could be high, but not knowable since the trip is terminated.
However, when fishing is good, longfin landings can often exceed $30,000 per trip and mackerel landings can exceed $150,000 per trip.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
3k. Related to 3j, for mackerel limited access permitted vessels, NMFS would track the number of slippage events. Once a cap of 5 slippage events (adjustable via specifications) occur in any given year for notified and observed mackerel trips then subsequent slippage events on any notified and observed Mackerel trip would result in trip termination fleet-wide for the rest of that year. The goal is to minimize slippage events.

1. **Managed Resources Impacts** (mackerel, *Illex*, butterfish, longfin squid)

A low positive impact would be expected compared to the no-action alternative. To the degree that this alternative minimizes slippage and increases the quality of data on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low.

2. **Non-target Species Impacts** (Including RH/S and species managed in other plans)

A positive impact would be expected compared to the no-action alternative. This alternative would seek to discourage slippage events so that data can be obtained on the composition of all catches. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since some fish that are released when slipped may survive but are unlikely to survive if hauled aboard there may be some additional mortality on a haul by haul basis. Impacts would be greater than 3l which has a higher cap before terminations are triggered. Given that many non-target species interaction events are rare and large, even infrequent slippage could confound catch estimates made without observing all hauls. While absolute numbers of slippage events are likely low, partly that could be just because of low observer coverage rates and the key point is that individual hauls on MSB trips can be quite large (more than 100,000 pounds per haul for mackerel and more than 20,000 per haul for longfin squid) so it doesn't take more than a few slipped hauls to potentially have a strong impact on overall catch estimates.

3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would substantially affect overall fishery effort even if it resulted in terminations of some observed trips. This would apply if the trigger was either 5 or 10 trips.

4. **Protected Resources**

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would substantially affect overall fishery effort even if it resulted in terminations of some observed trips. This would apply if the trigger was either 5 or 10 trips. Theoretically, making sure all catch is observed could lessen the chance of observers missing protected species interactions though this is not known to be a problem.
5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. It is difficult to quantify the socio-economic impacts because participants are likely to have a wide variety of responses. Some vessels may just not slip where they would have previously, and the only extra cost is time for extra sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Since the vessel would have to return to port eventually, the cost is the forgone revenue on what would have been the rest of the trip. If termination occurs near what would have been the natural end of a trip the costs would be low. If termination occurs near the beginning on a trip then the costs could be high, but not knowable since the trip is terminated. However, when fishing is good, longfin landings can often exceed $30,000 per trip and mackerel landings can exceed $150,000 per trip.

Because of the impossibility of predicting fishery participant responses, the variety of trip types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify socio-economic impacts related to this alternative. Analysis described above concluded that the mackerel fishery averages 15 hauls a year with unobserved catch, which could theoretically trigger trip terminations. Due to the nature of the analysis this number would be an upper bounds.

Compared to 3l, this alternative would be expected to be more negative since fewer slipped hauls could occur before additional slippages would result in future trip terminations. Note: once the slippage cap was achieved, any vessel with an additional slippage would have to terminate even if it had never slipped before in that year.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
3l. Related to 3j, for mackerel limited access permitted vessels, NMFS would track the number of slippage events. Once a cap of 10 slippage events (adjustable via specifications) occur in any given year for notified and observed mackerel trips then subsequent slippage events on any notified and observed Mackerel trip would result in trip termination fleet-wide for the rest of that year. The goal is to minimize slippage events. The only slippages that would count against the cap are non-emergency events, so the exceptions 1, 2, and 3 in 3j would not count against the slippage cap. Operational discards (small quantities of fish that remain in the net) that are made available to the observer for visual access prior to discarding would also not count against the slippage cap. Requirements and provisions of the measure can be modified via the annual specifications process.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)
A low positive impact would be expected compared to the no-action alternative. To the degree that this alternative minimizes slippage and increases the quality of data on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low. Since this alternative would be less restrictive than 3k, benefits would be less as well.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)
A positive impact would be expected compared to the no-action alternative. This alternative would seek to discourage slippage events so that data can be obtained on the composition of all catches. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since some fish that are released when slipped may survive but are unlikely to survive if hauled aboard there may be some additional mortality on a haul by haul basis. Impacts would be less than 3k which has a lower cap before terminations are triggered. Given that many non-target species interaction events are rare and large, even infrequent slippage could confound catch estimates made without observing all hauls. Since this alternative would be less restrictive than 3k, benefits would be less as well. The modification to not count operational discards that have been made visible to the observer should not change the effect of the measure since such operational discards are small and the observer could confirm they are small. While absolute numbers of slippage events are likely low, partly that could be just because of low observer coverage rates and the key point is that individual hauls on MSB trips can be quite large (more than 100,000 pounds per haul for mackerel and more than 20,000 per haul for longfin squid) so it doesn't take more than a few slipped hauls to potentially have a strong impact on overall catch estimates.

3. Habitat Impacts Including EFH
Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would substantially affect overall fishery effort even if it resulted in terminations of some observed trips. This would apply if the trigger was either 5 or 10 trips. Theoretically, making sure all catch is observed could lessen the chance of observers missing protected species interactions though this is not known to be a problem.
4. **Protected Resources**

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would substantially affect overall fishery effort even if it resulted in terminations of some observed trips. This would apply if the trigger was either 5 or 10 trips.

5. **Human Communities**

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. It is difficult to quantify the socio-economic impacts because participants are likely to have a wide variety of responses. Some vessels may just not slip where they would have previously, and the only extra cost is time for extra sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Since the vessel would have to return to port eventually, the cost is the forgone revenue on what would have been the rest of the trip. If termination occurs near what would have been the natural end of a trip the costs would be low. If termination occurs near the beginning on a trip then the costs could be high, but not knowable since the trip is terminated. However, when fishing is good, longfin landings can often exceed $30,000 per trip and mackerel landings can exceed $150,000 per trip.

Because of the impossibility of predicting fishery participant responses, the variety of trip types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify socio-economic impacts related to this alternative. Analysis described above concluded that the mackerel fishery averages 15 hauls a year with unobserved catch, which could theoretically trigger trip terminations. Due to the nature of the analysis this number would be an upper bounds.

Compared to 3k, this alternative would be expected to be less negative since more slipped hauls could occur before additional slippages would result in future trip terminations. Note: once the slippage cap was achieved, any vessel with an additional slippage would have to terminate even if it had never slipped before in that year.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
3m. Related to 3j, for longfin squid moratorium permitted vessels, NMFS would track the number of slippage events. Once a cap of 5 slippage events (adjustable via specifications) occur in any given trimester for notified and observed longfin squid trips then subsequent slippage events on any notified and observed longfin squid trip would result in trip termination for the rest of that trimester. The goal is to minimize slippage events.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A positive impact would be expected compared to the no-action alternative. To the degree that this alternative minimizes slippage and increases the quality of data on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low except for butterfish. Since discards in the longfin squid fishery are a major portion of butterfish mortality better discard information has a strong potential to improve data and management.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A positive impact would be expected compared to the no-action alternative. This alternative would seek to discourage slippage events so that data can be obtained on the composition of all catches. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since some fish that are released when slipped may survive but are unlikely to survive if hauled aboard there may be some additional mortality on a haul by haul basis. Impacts would be greater than 3n which has a higher cap before terminations are triggered. Given that many non-target species interaction events are rare and large, even infrequent slippage could confound catch estimates made without observing all hauls. While absolute numbers of slippage events are likely low, partly that could be just because of low observer coverage rates and the key point is that individual hauls on MSB trips can be quite large (more than 100,000 pounds per haul for mackerel and more than 20,000 per haul for longfin squid) so it doesn't take more than a few slipped hauls to potentially have a strong impact on overall catch estimates.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would substantially affect overall fishery effort even if it resulted in terminations of some observed trips. This would apply if the trigger was either 5 or 10 trips.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would substantially affect overall fishery effort even if it resulted in
terminations of some observed trips. This would apply if the trigger was either 5 or 10 trips. Theoretically, making sure all catch is observed could lessen the chance of observers missing protected species interactions though this is not known to be a problem.

5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. It is difficult to quantify the socio-economic impacts because participants are likely to have a wide variety of responses. Some vessels may just not slip where they would have previously, and the only extra cost is time for extra sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Since the vessel would have to return to port eventually, the cost is the forgone revenue on what would have been the rest of the trip. If termination occurs near what would have been the natural end of a trip the costs would be low. If termination occurs near the beginning on a trip then the costs could be high, but not knowable since the trip is terminated. However, when fishing is good, longfin landings can often exceed $30,000 per trip and mackerel landings can exceed $150,000 per trip.

Because of the impossibility of predicting fishery participant responses, the variety of trip types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify socio-economic impacts related to this alternative. Analysis described above concluded that the longfin squid fishery averaged 77 hauls per year with unobserved catch, which could trigger trip terminations. Due to the nature of the analysis these numbers would be upper bounds.

Compared to 3n, this alternative would be expected to be more negative since fewer slipped hauls could occur before additional slippages would result in future trip terminations. Note: once the slippage cap was achieved, any vessel with an additional slippage would have to terminate even if it had never slipped before in that trimester.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
3n. Related to 3j, for longfin squid moratorium permitted vessels, NMFS would track the number of slippage events. Once a cap of 10 slippage events (adjustable via specifications) occur in any given trimester for notified and observed longfin squid trips then subsequent slippage events on any notified and observed longfin squid trip would result in trip termination for the rest of that trimester. The goal is to minimize slippage events.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A positive impact would be expected compared to the no-action alternative. To the degree that this alternative minimizes slippage and increases the quality of data on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low except for butterfish. Since discards in the longfin squid fishery are a major portion of butterfish mortality better discard information has a strong potential to improve data and management. Since this alternative would be less restrictive than 3m, benefits would be less as well.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A positive impact would be expected compared to the no-action alternative. This alternative would seek to discourage slippage events so that data can be obtained on the composition of all catches. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since some fish that are released when slipped may survive but are unlikely to survive if hauled aboard there may be some additional mortality on a haul by haul basis. Impacts would be less than 3m which has a lower cap before terminations are triggered. Given that many non-target species interaction events are rare and large, even infrequent slippage could confound catch estimates made without observing all hauls. Since this alternative would be less restrictive than 3m, benefits would be less as well. While absolute numbers of slippage events are likely low, partly that could be just because of low observer coverage rates and the key point is that individual hauls on MSB trips can be quite large (more than 100,000 pounds per haul for mackerel and more than 20,000 per haul for longfin squid) so it doesn't take more than a few slipped hauls to potentially have a strong impact on overall catch estimates.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would substantially affect overall fishery effort even if it resulted in terminations of some observed trips. This would apply if the trigger was either 5 or 10 trips.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would substantially affect overall fishery effort even if it resulted in
terminations of some observed trips. This would apply if the trigger was either 5 or 10 trips. Theoretically, making sure all catch is observed could lessen the chance of observers missing protected species interactions though this is not known to be a problem.

5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. It is difficult to quantify the socio-economic impacts because participants are likely to have a wide variety of responses. Some vessels may just not slip where they would have previously, and the only extra cost is time for extra sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Since the vessel would have to return to port eventually, the cost is the forgone revenue on what would have been the rest of the trip. If termination occurs near what would have been the natural end of a trip the costs would be low. If termination occurs near the beginning on a trip then the costs could be high, but not knowable since the trip is terminated. However, when fishing is good, longfin landings can often exceed $30,000 per trip and mackerel landings can exceed $150,000 per trip.

Because of the impossibility of predicting fishery participant responses, the variety of trip types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify socio-economic impacts related to this alternative. Analysis described above concluded that the longfin squid fishery averaged 77 hauls per year with unobserved catch, which could trigger trip terminations. Due to the nature of the analysis these numbers would be upper bounds.

Compared to 3m, this alternative would be expected to be less negative since more slipped hauls could occur before additional slippages would result in future trip terminations. Note: once the slippage cap was achieved, any vessel with an additional slippage would have to terminate even if it had never slipped before in that trimester.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
3o. For mackerel and/or longfin squid permitted vessels, if a trip is terminated within 24 hours because of any of the anti-slippage provisions (3g, 3h, 3k-3n), then the relevant vessel would have to take an observer on its next trip.

The idea behind this alternative is that vessels may seek to have trips terminated at the start of a trip to avoid having to take observers for extended trips. If such strategic behavior became widespread, it would likely bias the data compared to typical fleet behavior.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A low positive impact would be expected compared to the no-action alternative. To the degree that this alternative improves data on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low except for butterfish. Since discards in the longfin squid fishery are a major portion of butterfish mortality better discard information has a strong potential to improve data and management. The impact is low because this may be a rare circumstance.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A low positive impact would be expected compared to the no-action alternative. This alternative would seek to discourage observer avoidance strategies so that data can be obtained on the composition of typical trips. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Given that many non-target species interaction events are rare and large, even infrequent slippage could confound catch estimates made without observing all hauls. The impact is low because this may be a rare circumstance.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would affect overall fishery effort.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would affect overall fishery effort.
5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. Vessels may experience reduced revenue and/or higher costs due to waiting for another observer or due to paying for another observer (proposed to be $325/day) if an industry-funded observer program is in place.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
Allow mackerel and/or longfin squid permitted vessels to be assigned an annual quota (set during specifications) of slippage events related to 3j, specified annually. Once their slippage quota was reached, vessels would have to terminate an observed trip as well as upon any slippage event on subsequent observed trips for the remainder of the calendar year.

This alternative would be in place of the fleet-wide caps and the vessel caps would be specified at a later date. As such, potential benefits would occur in the future (versus 3k-3n which would be implemented sooner if selected) and be dependent on what level the cap was set at.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A potential positive impact would be expected compared to the no-action alternative. To the degree that this alternative increases the quality of data on discards, there could be positive impacts to the managed species if discards are later reduced or better accounted for (good accounting for discards can help avoid overfishing) based on that information. Since both discards and uncertainty about discards are already accounted for during specifications setting, impacts should be low except for butterfish. Since discards in the longfin squid fishery are a major portion of butterfish mortality better discard information has a strong potential to improve data and management.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potential positive impact would be expected compared to the no-action alternative. This alternative would seek to discourage slippage events so that data can be obtained on the composition of all catches. To the degree that such data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since some fish that are released when slipped may survive but are unlikely to survive if hauled aboard there may be some additional mortality on a haul by haul basis. Given that many non-target species interaction events are rare and large, even infrequent slippage could confound catch estimates made without observing all hauls.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would substantially affect overall fishery effort even if it resulted in terminations of some observed trips.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not expected that this alternative would substantially affect overall fishery effort even if it resulted in terminations of some observed trips. Theoretically, making sure all catch is observed could
lessen the chance of observers missing protected species interactions though this is not known to be a problem.

5. Human Communities

Compared to the no-action alternative, impacts appear mixed with uncertain net impacts.

On one hand a negative impact would be expected compared to the no-action alternative. If less than the specified slippage events occur the impacts may be negligible. Once terminations are triggered, some vessels may just not slip where they would have previously, and the only extra cost is sorting fish on deck. If slippage occurred previously because of safety issues and vessels now took higher risks to avoid trip termination then vessel/crew safety could be reduced. If vessels are forced to terminate then they would lose the value of catch they might have made on the rest of the trip. Since the vessel would have to return to port eventually, the cost is the forgone revenue on what would have been the rest of the trip. If termination occurs near what would have been the natural end of a trip the costs would be low. If termination occurs near the beginning on a trip then the costs could be high, but not knowable since the trip is terminated. However, when fishing is good, longfin landings can often exceed $30,000 per trip and mackerel landings can exceed $150,000 per trip.

Because of the impossibility of predicting fishery participant responses, the variety of trip types, and the impossibility of predicting when a slipped haul might occur, it is not possible to further quantify socio-economic impacts related to this alternative.

A low positive impact would be expected compared to 3k-m. The advantage of having the slippage quota be vessel based is that vessels have a direct incentive to minimize unnecessary slippage events to save their slippage quota for when they really need it (e.g. due to safety issues) and thereby avoid situations where subsequent slippage events result in forced trip terminations.

On the other hand, to the extent that this alternative led to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then this alternative might result in potentially positive long-term benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
Alternative Set 3 Summary - Additional At-Sea Observation Optimization Measures

1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

Many of the action alternatives are expected to have some low incremental managed-resource benefits related to better observer data. Since the general operation of the observers is not known to be a major problem for most of the managed species, impacts are generally low. However, since discarding of butterfish in the longfin squid fishery is a major component of fishing mortality, measures to track, eliminate, or reduce slippage in the longfin squid fishery would be expected to result in relatively greater positive impacts (3g, 3h, 3i, 3j, 3m, 3n, and 3p).

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

The alternatives that generally result in assistance for observers to get their work done effectively (3b-3d) would likely result in low incremental benefits. Since slippage has the potential to bias observer data, the alternatives that track, eliminate, or reduce slippage would be expected to have relatively greater benefits related to data quality, and the ones that most reduce slippage would be expected to have the greatest positive impacts (3f, 3g, and 3h).

3. **Habitat Impacts Including EFH**

None of the action alternatives are expected to impact habitat.

4. **Protected Resources**

The alternatives that generally result in assistance for observers to get their work done effectively (3b-3d) would likely result in low incremental benefits. Regarding the alternatives that deal with slippage, there is no indication that protected resource interactions are currently being missed because of discards that are not brought aboard a vessel but theoretically, making sure all catch is observed could lessen the chance of observers missing protected species interactions.

5. **Human Communities**

Human community impacts are mixed depending on which interest group is considered. For commercial fishing, the alternatives involving generally assisting observers should have negligible impacts since most do it already. Slippage restrictions could cause trip terminations resulting in lost revenue or potential safety issues if vessels bring catch aboard in dangerous conditions. The stricter the restriction on slippage the greater the potential costs. The interested public would benefit to the extent that better monitoring could lead to better RH/S management.
7.4 Alternative Set 4 - Port-side and Other Sampling/Monitoring Measures

Statement of Problem/Need for Action:

The current suite of reporting and monitoring requirements are insufficient to precisely estimate RH/S catch.

Background:

The measures in this Alternative Set would (alone and/or in combination with other alternatives) increase reporting and/or monitoring with the overall goal of improving the precision of RH/S catch estimates.

From a practical standpoint, it is more efficient to subsample the landings of river herring and other non-target species when a herring/mackerel MWT vessel reaches the dock than when it is at sea. Discards that occur at sea of non-target species are easier to monitor than are the landed fractions that go into the hold due to the large volumes involved. Dockside sampling could have higher sampling rates to better characterize the species retained and an entire catch could be evaluated in one day or less as opposed to having a person at sea for multiple days. This option does not mean that at sea monitors are unnecessary – they are necessary to monitor discards. However, since most RH/S are retained (esp. for mackerel trips), portside sampling could increase sampling coverage with lower costs than at-sea observers.

The observer program has indicated that they would provide staff (1 person half to full time depending on level of sampling) to manage the selection of vessels and organization of data for port-side sampling.

NOTE ON COMBINATIONS: All of the action alternatives in this Alternative Set could be implemented singly or in combination with any other alternative(s) in this Alternative Set.

When comparing alternatives relative to the mackerel fishery or the longfin squid fishery, the mackerel alternatives are likely to have a greater positive impact on RH/S because substantially more RH/S appear to be caught in the mackerel fishery, but it is not possible to quantify the differential in potential benefits.
4a. No-action

If this alternative is selected, then no measures from Alternative Set 4 would be implemented and the existing monitoring measures (as described in section 5.4) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below. While this section focuses on incremental impacts, cumulative impacts are discussed in Section 8.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

Neutral or negligible impacts would be expected compared to the action alternatives. Portside monitoring of landings is designed to better estimate low concentrations of incidentally landed catch such as RH/S, and there is no indication that there are major monitoring issues with landings of any of the managed resources.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 4 would improve landings monitoring through portside sampling, and RH/S are sometimes mixed into directed species’ landings, there would be foregone benefits to non-target species including RH/S if the no-action alternative is chosen because less information on the landings of those species would be available for future management decisions.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the action alternatives. Portside monitoring of landings is not expected to impact habitat.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the action alternatives. Portside monitoring of landings is not expected to impact protected resources.

5. Human Communities

The impacts of the no-action alternative in comparison to the other alternatives for human communities appear mixed with uncertain net impacts. On one hand the costs to fishery participants of paying for the additional monitoring requirements would be avoided, which is a positive impact.

On the other hand, to the extent that these alternatives lead to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the
managed resources and/or RH/S, then choosing the no-action alternative in comparison to the other alternatives might result in foregone benefits.

These could include lost commercial revenues, lost recreational opportunities, lost cultural values for RH/S, and/or other lost non-market existence values (i.e. value related to the knowledge that these species are being conserved successfully) resulting from diminished stocks compared to optimally productive stocks. Due to the uncertainty about how the mackerel and longfin squid fisheries are impacting either the managed species or RH/S, these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.

4b. Require industry-funded 3rd party port-side landings sampling program (including total weight documentation) for mackerel landings over 20,000 pounds. Required coverage levels would be specified annually during specifications. NEFSC would accredit samplers and manage the program/data. Vessels would contract directly with providers and pay providers directly. If selected, vessels would have to wait until their sampler arrived unless a waiver is obtained from the observer program.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

Neutral or negligible impacts would be expected compared to the no-action alternative. Portside monitoring of landings is designed to better estimate low concentrations of incidentally landed catch such as RH/S, and there is no indication that there are major monitoring issues with landings of any of the managed resources.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

Positive impacts would be expected compared to the no-action alternative. To the degree that better incidental landings data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. While requiring industry to pay for portside monitoring may discourage effort, mackerel fishing primarily takes place with mid-water gear that should not substantially impact habitat.
4. **Protected Resources**

Potentially positive impacts would be expected compared to the no-action alternative. Requiring industry to pay for portside monitoring may discourage overall effort, leading to less protected resource interactions.

5. **Human Communities**

The impacts for human communities of this alternative in comparison to the no-action alternative appear mixed with uncertain net impacts.

On one hand there are negative impacts related to costs of paying for monitoring. Dockside monitors for groundfish cost $50-$70/hr. Different sized vessels would have different costs for offload monitoring due to different hold sizes and processor offload speeds, but a 6-14 hour offload from a 3-5 day trip would costs $300-$980 for dockside monitoring. Discussions with MSB Advisory Panel members suggested that 6-14 hours would be typical offload time for high volume trips but trips around the thresholds of 20,000 pounds of mackerel or 2,500 pounds of longfin squid would take much shorter and cost less to monitor.

This cost is low compared to at-sea sampling costs of $800/day (plus $400 in administrative costs) or $3,600-$6,000 for observer costs for a 3-5 day trip. If the Council required 25%, 50%, 75%, or 100% of trips to be monitored then participants could have to pay for approximately that percentage of their trips to be monitored unless additional funds are available. Some dockside monitoring is already being funded though academic grants but it is not certain that such funding is permanent.

Revenue information for different mackerel vessels/trips is available related to Alternative Set 5 (see Section 7.5) to compare against these costs. Unless vessels have to wait for a portside monitor, it is expected that sampling could occur while offloading is occurring and as such would not substantially change offload times.

On the other hand, to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative in comparison to the no-action alternative might result in positive benefits related to future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
4c. Require industry-funded 3rd party port-side landings sampling program (including total weight documentation) for longfin squid landings over 2,500 pounds. Required coverage levels would be specified annually during specifications. NEFSC would accredit samplers and manage the program/data. Vessels would contract directly with providers and pay provider directly. If selected, vessels would have to wait until their sampler arrived unless a waiver is obtained from the observer program.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

Neutral or negligible impacts would be expected compared to the no-action alternative. Portside monitoring of landings is designed to better estimate low concentrations of incidentally landed catch such as RH/S, and there is no indication that there are major monitoring issues with landings of any of the managed resources.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

Neutral or negligible impacts would be expected compared to the no-action alternative. Since on longfin squid trips much non-target catch and most RH/S caught on longfin squid trips are discarded rather than retained (see table 22), portside sampling is probably would not be an effective way to obtain RH/S catch information.

Also, targeting information collected by NEFOP observers suggests that only a small portion of small mesh bottom trawl catches of RH/S are actually from longfin squid-targeted tows with herring accounting for most followed by mackerel and silver hake. While these are not extrapolated catches, and target species is self-reported to observers prior to each tow, on a relative basis the information suggests that the longfin squid fishery may not actually be accounting for that much RH/S catch, which is consistent with the directed-trip based analysis conducted annually for the specifications’ environmental assessment (provided above in section 6.3).

3. Habitat Impacts Including EFH

A potentially positive impact would be expected compared to the no-action alternative. Requiring industry to pay for portside monitoring may discourage effort, leading to less habitat impacts from bottom trawling.

4. Protected Resources

Potentially positive impacts would be expected compared to the no-action alternative. Requiring industry to pay for portside monitoring may discourage overall effort, leading to less protected resource interactions.
5. Human Communities

The impacts for human communities of this alternative in comparison to the no-action alternative appear mixed with uncertain net impacts.

On one hand there are negative impacts related to costs of paying for monitoring. Dockside monitors for groundfish cost $50-$70/hr. Different sized vessels would have different costs for offload monitoring due to different hold sizes and processor offload speeds, but a 6-14 hour offload from a 3-5 day trip would costs $300-$980 for dockside monitoring. Discussions with MSB Advisory Panel members suggested that 6-14 hours would be typical offload time for high volume trips but trips around the thresholds of 20,000 pounds of mackerel or 2,500 pounds of longfin squid would take much shorter and cost less to monitor.

This cost is low compared to at-sea sampling costs of $800/day (plus $400 in administrative costs) or $3,600-$6,000 for observer costs for a 3-5 day trip. If the Council required 25%, 50%, 75%, or 100% of trips to be monitored then participants would have to pay for approximately that percentage of their trips to be monitored unless additional funds are available. Some dockside monitoring is already being funded though academic grants but it is not certain that such funding is permanent.

Revenue information for different mackerel vessels/trips is available related to Alternative Set 5 (see section 7.5) to compare against these costs. Unless vessels have to wait for a sampler, it is expected that sampling could occur while offloading is occurring and as such would not substantially change offload times.

On the other hand, to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative in comparison to the no-action alternative might result in positive benefits related to future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
4d. Require volumetric vessel-hold certification for Tier 3 limited access mackerel permits and specify a volume to weight conversion.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

Neutral or negligible impacts would be expected compared to the no-action alternative. Tier 3 mackerel permits are not expected to catch a major portion of the mackerel quota and there are no major problems reported with monitoring of the managed species for these vessels.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

Potentially low positive impacts would be expected compared to the no-action alternative. This alternative could facilitate rapid catch weight estimates based on vessel volume for portside sampling, observer data haul weight estimates, and vessels’ VTR kept-weight estimates. To the degree that better non-target catch data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Impacts are low because Tier 3 vessels are expected to catch only a small portion of the mackerel quota.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring hold certifications would not be expected to change effort and mackerel fishing primarily takes place with mid-water gear that should not substantially impact habitat.

4. Protected Resources

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring hold certifications would not be expected to change effort.

5. Human Communities

The impacts for human communities of this alternative in comparison to the no-action alternative appear mixed with uncertain net impacts.

Potentially negative impacts would be expected for the vessels expected to qualify for a Tier 3 mackerel permit (around 300). Informal contacts by council staff with several marine surveyors revealed that a fish hold measurements could run approximately $13.30-$40 per foot of vessel length, which could range from as low as $1,000 for a 75 foot vessel to as high as $6,000 for a 150 foot vessel, not including travel expenses. To the extent that surveys are already required for insurance purposes these costs may be already part of a vessels operating costs. Costs may be higher if a marine architect or naval engineer is used. Industry members have communicated to Council staff that, while some smaller vessels are configured in a way that could facilitate hold certifications (the refrigerated seawater or “tank” boats), many vessels that participate in a “fresh” product fishery are not configured in a way that facilitates a certification of a fixed hold capacity.
On the other hand, to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative in comparison to the no-action alternative might result in positive benefits related to future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.

4e. Require volumetric vessel-hold certification for longfin squid moratorium permits and specify a volume to weight conversion.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

Neutral or negligible impacts would be expected compared to the no-action alternative. It is not believed that major problems exist with current monitoring of the managed species’ landings.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

Potentially positive impacts would be expected compared to the no-action alternative. This alternative could facilitate rapid catch weight estimates based on vessel volume for portside sampling, observer data hail weight estimates, and vessels’ VTR kept-weight estimates. To the degree that better non-target catch data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring hold certifications would not be expected to change effort and mackerel fishing primarily takes place with mid-water gear that should not substantially impact habitat.
4. **Protected Resources**

Neutral or negligible impacts would be expected compared to the no-action alternative. Requiring hold certifications would not be expected to change effort.

5. **Human Communities**

The impacts for human communities of this alternative in comparison to the no-action alternative appear mixed with uncertain net impacts.

Potentially negative impacts would be expected for the vessels with longfin squid moratorium permits (around 380, though some of these may have to get hold certifications related to mackerel regulations currently being implemented). Informal contacts by council staff with several marine surveyors revealed that a fish hold measurements could run approximately $13.30-$40 per foot of vessel length, which could range from as low as $1,000 for a 75 foot vessel to as high as $6,000 for a 150 foot vessel, not including travel expenses. Costs may be higher if a marine architect or naval engineer is used. To the extent that surveys are already required for insurance purposes these costs may be already part of a vessels operating costs.

Industry members have communicated to Council staff that, while some longfin squid vessels are configured in a way that could facilitate hold certifications (the refrigerated seawater or “tank” boats), many vessels that participate in a “fresh” product fishery are not configured in a way that facilitates a meaningful certification of a fixed hold capacity.

On the other hand, to the extent that this alternative leads to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of the managed resources and/or RH/S, then choosing this alternative in comparison to the no-action alternative might result in positive benefits related to future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
Within 6 months of the completion of the Sustainable Fisheries Coalition RH/S avoidance project (expected late 2013), the Council will meet to formally review the results and consider the appropriateness of developing a framework adjustment to implement any additional catch avoidance strategies that are suggested by the results of the Sustainable Fisheries Coalition avoidance project. (PREFERRED)

This would commit the Council to consider the findings from this project as they could apply to reducing the catch of RH/S in pelagic fisheries. Full details on this project are included in Appendix 7, but generally the project is testing if oceanographic and fishery data can be used to help industry avoid potential RH/S hotspots. Implementing measures similar to this project (i.e. making participation mandatory) would be a frameworkable action. No immediate impacts would be expected for any VEC. Any potential follow-up actions would be subsequently analyzed and considered separately.

Alternative Set 4 Summary - Port-side and Other Sampling/Monitoring Measures

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)
 All of the action alternatives are expected to have negligible impacts for managed species since it is believed that their landings are already generally well monitored.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)
 Monitoring landings from mackerel trips (4b) would be expected to have the most benefit especially for RH/S since RH/S appear to often be retained by the mackerel fishery. Benefits are not as high with longfin squid trips (4c) since they discard more of their non-target catch. Hold certifications may help with some aspects of monitoring but may not be feasible for fresh-product boats that often reconfigure their holds.

3. Habitat Impacts Including EFH
 None of the action alternatives are expected to directly impact habitat but if vessels had to pay for their monitoring that could reduce effort which would generally lower habitat impacts.

4. Protected Resources
 None of the action alternatives are expected to directly impact protected resources but if vessels had to pay for their monitoring that could reduce effort which would generally lower protected resource interactions.

5. Human Communities
 Human community impacts are mixed depending on which interest group is considered. Commercial participants could incur moderate to higher additional costs if they have to pay for dockside monitoring (but this is much less expensive than at-sea coverage). Hold certifications would involve low to moderate costs and would generally be a one-time or infrequent cost. The interested public would benefit to a modest degree primarily to the extent that better monitoring could lead to better RH/S management.
7.5 Alternative Set 5 – At-Sea Observer Coverage Requirements

Statement of Problem/Need for Action:

The current suite of reporting and monitoring requirements is insufficient to precisely estimate RH/S catch.

Background:

The measures in this Alternative Set would (alone and/or in combination with other alternatives) increase reporting and/or monitoring with the overall goal of improving the precision of RH/S catch estimates. The focus of these alternatives is on increasing the observer coverage rates of mackerel and longfin squid trips.

The average trip cost values cited in this analysis include variable costs such as fuel, oil, ice, food, fishing supplies, vessel/gear damages, and water but does not include crew shares/wages, dockage fees, or boat mortgage payments. Trip costs were estimated based on 2010 observer data. Observers ask for information on these costs and vessels were binned by gear, vessel size, and day versus multi-day vessels.

NOTE ON COMBINATIONS: Only one of the 5b (observer coverage for mackerel mid-water trawl) alternatives could be chosen. Likewise, only one of the 5c (observer coverage for mackerel small mesh bottom trawl) and one of the 5d (observer coverage for longfin squid small mesh bottom trawl) alternatives could be chosen. One alternative from each of these could be selected (a total of three). 5e1 and 5e2 (strata-fleet alternatives for mid-water trawl) are mutually exclusive as are 5e3 and 5e4 (strata-fleet alternatives for small mesh bottom trawl) but one alternative from the first pair could be chosen with one from the second pair. If any of the 5e alternatives were chosen, they would not be combinable with any of the 5b, 5c, or 5d alternatives (coverage could be based on a set percentage of trips or a set target coefficients of variation (C.V.s) but not both). 5f, 5g, and 5h provide for industry funding and review of the increased observer coverage levels proposed in 5b-5e so they could be added on to any of the other action alternatives.

If any measure in this Alternative Set is selected for mackerel, the Council would also need to select Alternative 1d48 (48-hr pre-trip notification) or 1d72 (72-hr pre-trip notification). There is already a pre-trip notification requirement in effect for longfin squid moratorium permit holders.

When comparing alternatives relative to the mackerel fishery or the longfin squid fishery, the mackerel alternatives are likely to have a greater positive impact on RH/S because substantially more RH/S appear to be caught in the mackerel fishery, but it is not possible to quantify the differential in potential benefits.
5a. No-action

If this alternative is selected, then no measures from Alternative Set 5 would be implemented and the existing observer coverage procedures (as described in section 5.5) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below. While this section focuses on incremental impacts, cumulative impacts are discussed in Section 8.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A negative impact would be expected compared to the action alternatives. Since the alternatives in Alternative Set 5 would improve monitoring of discards of the managed resources there would be some foregone benefits if the no-action alternative is chosen. Since discarding of butterfish in the longfin squid fishery is the only major concern about discarding of the managed species, the forgone benefits would be primarily limited to butterfish and the longfin squid fishery.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A negative impact would be expected compared to the action alternatives. Since the alternatives in Alternative Set 5 would improve at-sea catch monitoring, and RH/S are sometimes mixed into directed species’ catch, there would be foregone benefits to non-target species including RH/S if the no-action alternative is chosen because less information on the catch of those species would be available for future management decisions.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the action alternatives. At-sea monitoring of catch is not expected to impact habitat.

4. Protected Resources

A negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 5 would improve at-sea catch monitoring, and protected resources are sometimes encountered in the mackerel and longfin squid fisheries, there would be foregone benefits to protected resources including RH/S if the no-action alternative is chosen because less information on the catch of those species would be available for future management decisions.

5. Human Communities

The impacts of the no-action alternative in comparison to the other alternatives for human communities appear mixed with uncertain net impacts. On one hand the costs to fishery participants of paying for the additional monitoring requirements would be avoided, which is a positive impact.
On the other hand, to the extent that these alternatives lead to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other non-target species, then choosing the no-action alternative in comparison to the other alternatives might result in foregone benefits.

These could include lost commercial revenues, lost recreational opportunities, lost cultural values for RH/S, and/or other lost non-market existence values (i.e. value related to the knowledge that these species are being conserved successfully) resulting from diminished stocks compared to optimally productive stocks. Due to the uncertainty about how the mackerel and longfin squid fisheries are impacting either the managed species or RH/S, these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.

5b. Mackerel MWT

Coverage of this fleet has historically primarily occurred because of the winter mixing of the herring and mackerel fisheries as opposed to focusing on the mackerel fishery. The sub-alternatives below would require a range of percentage-based coverage levels to improve coverage from the very low levels currently occurring and improve catch estimation.

5b1. Require 25% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5b2. Require 50% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5b3. Require 75% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.
5b4. Recommend 100% of MWT mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel. (PREFERRED)

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative. Since alternatives in Alternative Set 5 would somewhat improve monitoring of discards of the managed resources there could be some benefits but given there are no major reported issues with discarding of the managed species in the mackerel fishery, impacts would be expected to be low.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A positive impact would be expected compared to the no-action alternative. All of the proposed coverage rates are higher than current coverage rates (about 6.5 percent of mackerel catch was observed 2006-2010) and to the degree that additional data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since mackerel fishing only accounts for a portion of MWT activity, it is not possible to exactly specify how MWT catch estimate precision would change for these alternatives (which are specific to mackerel not all MWT) but it would improve. See section 5.5 for additional details on how RH estimate precision levels change based on coverage levels in the MWT fisheries. Also, at a constant trip coverage level as proposed in this alternative, incremental improvements to C.V.s would fluctuate from year to year (potentially substantially) due to changes in catch characteristics and effort rates. However since this alternative would implement higher coverage rates than are used currently, precision of non-target species catch estimates would be improved compared to the no-action alternative.

Based on the C.V. analysis in section 5.5 (which is for all MWT fishing), there are diminishing returns (better precision) for additional observer coverage. Thus gains (better precision) per dollar spent are greatest for going to 25% observer coverage and least going from 75% to 100%. However, as shown in figures 10-13 in Section 5.5, there are continued gains in precision (C.V.s get lower) throughout the range of trip coverages so there are still substantial gains in precision from moving from 75% to 100% even though it is a smaller gain compared to 25% to 50% or 50% to 75%. Thus moving to 25% or 50% or 75% from the status quo results in substantial precision improvements but the marginal benefit of going to 100% is less. These continued gains are related to the patchy nature of RH catch and the relatively small overall number of MWT trips. It is important to remember that the C.V. gains described in 5.5 would only be achieved if all MWT trips were subject to these coverage requirements and the gains in a given year from one coverage level to another vary by year due to the different RH catch rates from one year to another (compare figures 10 and 11 for example). Figures 10-13 also suggest that around a 65% coverage level may be necessary to achieve a C.V. of 0.3 for MWT for RH.
Precision gains to overall RH/S catch estimates in MWT fisheries may be limited if only the mackerel fishery is required to have higher observer coverage levels.

3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative if vessels do not have to pay for observer coverage (which is considered in other alternatives). In this case overall effort should not be impacted. If vessels have to pay for observer coverage then effort could be discouraged but impacts would still be neutral or negligible because most mackerel are caught with mid-water gear that generally does not contact the bottom.

4. **Protected Resources**

Neutral or negligible direct impacts would be expected compared to the no-action alternative if vessels do not have to pay for observer coverage (which is considered in other alternatives). In this case overall effort should not be impacted. If vessels have to pay for observer coverage then overall effort could be discouraged which could lead to positive impacts compared to the no-action alternative. Higher coverage would generate better data on protected resource interactions.

5. **Human Communities**

The impacts of this alternative in comparison to the no-action alternative appear mixed with uncertain net impacts. On one hand the costs to fishery participants of paying for the additional monitoring requirements would be a negative impact. The cost to vessels of at-sea observers would be $325 per day at sea. Since different vessels have different average trip lengths and trip length varies by trip it is not possible to describe the impact on any given vessel. However, the following table allows comparisons of an $325/day observer cost with 2010 trip revenue (from dealer data) and cost information (from observer data) from observed mackerel trips defined as 50% mackerel or over 100,000 pounds mackerel regardless of percentage. This trip definition accounts for nearly all mackerel landings in a given year. These trips are generally large volume trips. Smaller trips, with lower daily revenues, would likely be more impacted by observer costs. 2010 MWT observer information from these trips was binned into three categories based on vessel performance from 2006-2010: a) single MWT that had at least 3 million pounds of mackerel in any one year 2006-2010; b) paired MWT that had at least 3 million pounds of mackerel in any one year 2006-2010; and c) paired MWT that had less than 3 million pounds of mackerel in any one year 2006-2010 but more than 500,000 pounds of mackerel in one year. All pair trawl data was combined which is why the costs are the same for higher and lower volume pair trawl vessels. While it appears strange that the lower-volume paired MWT had higher revenues than the higher volume paired MWT, this is just a chance outcome related to the groupings of vessels coming from VTR data 2006-2010 and the distribution of 2010 observer coverage of those same vessels in 2010. All together these vessels account for most mackerel landings.
Table 65. Mackerel Mid-Water Trawl Costs and Revenues

<table>
<thead>
<tr>
<th></th>
<th>Mid-Water Trawl (MWT) (more than 3 mil pounds/year)</th>
<th>Paired MWT (more than 3 mil pounds/year)</th>
<th>Paired MWT (less than 3 mil pounds/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Days</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Avg Revenue/Day</td>
<td>8,059</td>
<td>14,486</td>
<td>16,075</td>
</tr>
<tr>
<td>Ave Cost/Day</td>
<td>3,494</td>
<td>2,602</td>
<td>2,602</td>
</tr>
</tbody>
</table>

Based on this data, adding $325/day would increase trip costs by 9% for single MWT, and 12% for paired MWT trips.

Depending on which alternative one is considering, the observer costs would apply to 25%, 50%, 75%, or 100% of vessels trips. While over time one would expect roughly even distribution among vessels if a coverage level of less than 100% is selected, within a year some vessels may be randomly selected more often than others and bear a disproportionate share of the increased observer costs. Also, among these vessels both costs and revenue vary so some vessels may be disproportionately affected compared to other vessels.

The approximate cost for an observer is $800/day. In addition to these at-sea costs, NMFS has estimated that it incurs approximately $400/day in administrative costs related to each additional day at sea.

While the per trip costs are most relevant to vessels, total costs can also be considered. Since coverage in this alternative would be related to 20,000 pound mackerel trips, 2006-2010 VTR data was analyzed to determine the approximate number of seadays fished on midwater trawl trips that kept 20,000 pounds or more of mackerel. These trips averaged 643 sea days each year ranging from 272 in 2010 to 926 in 2006. If 25%, 50%, 75%, or 100% of the average seadays (643) were observed it would require 161, 322, 482, and 643 days respectively. Multiplying these days by $325/day results in at-sea costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.05 million, $0.10 million, $0.16 million, and $0.21 million per year respectively. Multiplying these days by $400/day results in administrative costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.06 million, $0.13 million, $0.19 million, and $0.26 million per year respectively.

While there are human community costs there also could be human community benefits. To the extent that these alternatives lead to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other non-target species, then choosing this action alternative in comparison to the no-action alternative might result in additional benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
5c. Mackerel SMBT

A very small percentage of mackerel trips are observed overall. The sub-alternatives below would require a range of percentage-based coverage levels to improve coverage from the very low levels currently occurring and improve catch estimation. Analysis in the document relates these coverage levels to potential ranges of uncertainty that would result from such coverage levels.

5c1. Require 25% of SMBT (3.5 in) mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5c2. Require 50% of SMBT (3.5 in) mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5c3. Require 75% of SMBT (3.5 in) mackerel trips by federal vessels intending to retain over 20,000 pounds of mackerel to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel.

5c4. Recommend the following observer coverages percentages for mackerel limited access vessels intending to fish for or retain over 20,000 pounds of mackerel when using small mesh (<3.5 inches) bottom trawl gear: Tier 1: 100%; Tier 2: 50%; Tier 3: 25%. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 20,000 pounds of mackerel unless they had notified their intent to retain more than 20,000 pounds of mackerel. (PREFERRED)
1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

A potentially low positive impact would be expected compared to the no-action alternative. Since alternatives in Alternative Set 5 would somewhat improve monitoring of discards of the managed resources there could be some benefits but given there are no major reported issues with discarding of the managed species in the mackerel fishery, impacts would be expected to be low.

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A positive impact would be expected compared to the no-action alternative. All of the proposed coverage rates are higher than current coverage rates (about 6.5 percent of mackerel catch was observed 2006-2010) and to the degree that additional data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since mackerel fishing only accounts for a small portion of SMBT activity, it is not possible to exactly specify how SMBT catch estimate precision would change for these alternatives. Precision would improve but likely only by a small degree since mackerel trips only account for a small portion of all SMBT activity. See section 5.5 for additional details on how RH estimate precision levels change based on coverage levels in the SMBT fisheries. Also, at a constant trip coverage level as proposed in this alternative, incremental improvements to C.V.s would fluctuate from year to year (potentially substantially) due to changes in catch characteristics and effort rates. However since this alternative would implement higher coverage rates than are used currently, precision of non-target species catch estimates would be improved compared to the no-action alternative.

Based on the C.V. analysis in section 5.5 (which is for all SMBT fishing), there are diminishing returns (better precision) for additional observer coverage. Thus gains (better precision) per dollar spent are greatest for going to 25% observer coverage and least going from 75% to 100%. As shown in figures 14-17 in Section 5.5, there are continued gains in precision (C.V.s get lower) throughout the range of trip coverages so there are still some gains in precision from moving from 75% to 100%. The gains from 50% to 75% are minimal in some years while substantial in others while the gains going from 75% to 100% are generally quite small. Thus moving to 25% or 50% from the status quo results in substantial precision improvements but the marginal benefit of going to 75% or 100% is much less. It is important to remember that the C.V. gains described in 5.5 would only be achieved if all SMBT trips were subject to these coverage requirements and the gains in a given year from one coverage level to another vary by year due to the different RH catch rates from one year to another (compare figures 16 and 17 for example). Figures 14-17 also suggest that around a 40% coverage level may be necessary to achieve a C.V. of 0.3 for SMBT for river herring. Precision gains to overall RH/S catch estimates in SMBT fisheries may be limited if only the mackerel fishery is required to have higher observer coverage levels.

Since as discussed in Amendment 11, 90% or more of mackerel landings typically are made by Tier 1 vessels, the preferred alternative combined with 5b4 (100% observer coverage for all mid-water trawl fishing of mackerel) would likely result in about 90% or more of total mackerel catch being observed. Having some moderate coverage on the other vessels could be important because otherwise there could be an incentive to focus on using non Tier-1 vessels to avoid observer coverage requirements.
3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative if vessels do not have to pay for observer coverage (which is considered in other alternatives). In this case overall effort should not be impacted. If vessels have to pay for observer coverage then effort could be discouraged but impacts would still be neutral or negligible because most mackerel are caught with mid-water gear that generally does not contact the bottom.

4. **Protected Resources**

Neutral or negligible direct impacts would be expected compared to the no-action alternative if vessels do not have to pay for observer coverage (which is considered in other alternatives). In this case overall effort should not be impacted. If vessels have to pay for observer coverage then overall effort could be discouraged which could lead to positive impacts compared to the no-action alternative. Higher coverage would generate better data on protected resource interactions.

5. **Human Communities**

The impacts of this alternative in comparison to the no-action alternative appear mixed with uncertain net impacts. On one hand the costs to fishery participants of paying for the additional monitoring requirements would be a negative impact. The cost to vessels of at-sea observers would be $325 per day at sea. Since different vessels have different average trip lengths and trip length varies by trip it is not possible to describe the impact on any given vessel. However, the following table allows comparisons of an $325/day observer cost with 2010 trip revenue (from dealer data) and cost information (from observer data) from mackerel trips (50% mackerel or over 100,000 pounds mackerel regardless of percentage) by bottom trawlers based on 2010 observer data. These trips are generally large volume trips and smaller trips, with lower revenues, would be more impacted by observer costs. The vessels that were examined were those that either had at least one year 2006-2010 with 3 million pounds of mackerel or those with at least 500,000 pounds in any one year.

<table>
<thead>
<tr>
<th>Bottom Trawl (more than 3 million pounds per year)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Days</td>
<td>8</td>
</tr>
<tr>
<td>Avg Revenue/Day</td>
<td>12,945</td>
</tr>
<tr>
<td>Ave Cost/Day</td>
<td>1,639</td>
</tr>
</tbody>
</table>

Based on this data, adding $325/day would increase trip costs by 20% for bottom trawlers.

Depending on which alternative one is considering, the observer costs would apply to 25%, 50%, 75%, or 100% of vessels trips. While over time one would expect roughly even distribution among vessels (if 100% coverage is not selected), within a year some vessels may be randomly
selected more often than others and bear a disproportionate share of the increased observer costs. Also, among these vessels both costs and revenue vary so some vessels may be disproportionately affected compared to other vessels.

The approximate cost for an observer is $800/day. In addition to these at-sea costs, NMFS has estimated that it incurs approximately $400/day in administrative costs related to each additional day at sea.

While the per trip costs are most relevant to vessels, total costs can also be considered. Since coverage in this alternative would be related to 20,000 pound mackerel trips, 2006-2010 VTR data was analyzed to determine the approximate number of seadays fished on SMBT trips that kept 20,000 pounds or more of mackerel. These trips averaged 172 sea days each year ranging from 113 in 2009 to 286 in 2006. If 25%, 50%, 75%, or 100% of the average seadays (172) were observed it would require 43, 86, 129, and 172 days respectively. Multiplying these days by $325/day results in at-sea costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.01 million ($14,000), $0.03 million, $0.04 million, and $0.06 million per year respectively. Multiplying these days by $400/day results in administrative costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.02 million, $0.03 million, $0.05 million, and $0.07 million per year respectively.

While there are human community costs there also could be human community benefits. To the extent that these alternatives lead to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other non-target species, then choosing this action alternative in comparison to the no-action alternative might result in additional benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
5d. Longfin Squid SMBT

While coverage has increased in 2011 related to the implementation of the butterfish mortality cap on the longfin squid fishery, a small percentage of longfin squid trips have been observed historically. The sub-alternatives below would require a range of percentage-based coverage levels to improve coverage from the very low levels currently occurring and improve catch estimation. Analysis in the document relates these coverage levels to potential ranges of uncertainty that would result from such coverage levels.

5d1. Require 25% of SMBT (3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.

5d2. Require 50% of SMBT (3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.

5d3. Require 75% of SMBT (3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.

5d4. Require 100% of SMBT (3.5 in) longfin squid trips by federal vessels intending to retain over 2,500 pounds of longfin squid to carry observers. The NEFSC would assign coverage based on pre-trip notifications. Vessels would not be able to retain more than 2,500 pounds of longfin squid unless they had notified their intent to retain more than 2,500 pounds of longfin squid.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A positive impact would be expected compared to the no-action alternative. Since alternatives in Alternative Set 5 would improve monitoring of discards in the longfin squid fishery, and butterfish are a major discard concern in the longfin squid fishery, there would likely be benefits for butterfish related to increased observer coverage and related improvements in information regarding butterfish discarding.
2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A positive impact would be expected compared to the no-action alternative. All of the proposed coverage rates are higher than current coverage rates (about 3.5 percent of longfin squid catch was observed 2006-2010) and to the degree that additional data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. Since longfin squid fishing only accounts for a portion (though substantial) of SMBT activity, it is not possible to exactly specify how SMBT catch estimate precision would change for these alternatives but it would improve. See section 5.5 for additional details on how RH estimate precision levels change based on coverage levels in the SMBT fisheries. Also, at a constant trip coverage level as proposed in this alternative, incremental improvements to C.V.s would fluctuate from year to year (potentially substantially) due to changes in catch characteristics and effort rates. However since this alternative would implement higher coverage rates than are used currently, precision of non-target species catch estimates would be improved compared to the no-action alternative.

Based on the C.V. analysis in section 5.5 (which is for all SMBT fishing), there are diminishing returns (better precision) for additional observer coverage. Thus gains (better precision) per dollar spent are greatest for going to 25% observer coverage and least going from 75% to 100%. As shown in figures 14-17 in Section 5.5, there are continued gains in precision (C.V.s get lower) throughout the range of trip coverages so there are still some gains in precision from moving from 75% to 100%. The gains from 50% to 75% are minimal in some years while substantial in others while the gains going from 75% to 100% are generally quite small. Thus moving to 25% or 50% from the status quo results in substantial precision improvements but the marginal benefit of going to 75% or 100% is much less. It is important to remember that the C.V. gains described in 5.5 would only be achieved if all SMBT trips were subject to these coverage requirements and the gains in a given year from one coverage level to another vary by year due to the different RH catch rates from one year to another (compare figures 16 and 17 for example). Figures 14-17 also suggest that around a 40% coverage level may be necessary to achieve a C.V. of 0.3 for SMBT for river herring.

Targeting information collected by NEFOP observers suggests that only a small portion of small mesh bottom trawl catches of RH/S are actually from longfin squid-targeted tows with herring accounting for most followed by mackerel and silver hake. While these are not extrapolated catches, and target species is self-reported to observers prior to each tow, on a relative basis the information suggests that the longfin squid fishery may not actually be accounting for that much RH/S catch, which is consistent with the directed-trip based analysis conducted annually for the specifications’ environmental assessment (provided above in section 6.3). Precision gains to overall RH/S catch estimates in SMBT fisheries may be limited if only the longfin squid fishery is required to have higher observer coverage levels.
3. **Habitat Impacts Including EFH**

Neutral or negligible impacts would be expected compared to the no-action alternative if vessels do not have to pay for observer coverage (which is considered in other alternatives). In this case overall effort should not be impacted. If vessels have to pay for observer coverage then a potentially positive impact would be expected compared to the no-action alternative because having to pay for observers could discourage effort.

4. **Protected Resources**

Neutral or negligible direct impacts would be expected compared to the no-action alternative if vessels do not have to pay for observer coverage (which is considered in other alternatives). In this case overall effort should not be impacted. If vessels have to pay for observer coverage then overall effort could be discouraged which could lead to positive impacts compared to the no-action alternative. Higher coverage would generate better data on protected resource interactions.
5. Human Communities

The impacts of this alternative in comparison to the no-action alternative appear mixed with uncertain net impacts. On one hand the costs to fishery participants of paying for the additional monitoring requirements would be a negative impact. The cost to vessels of at-sea observers would be $325 per day at sea. Since different vessels have different average trip lengths and trip length varies by trip it is not possible to describe the impact on any given vessel. However, the following table allows comparisons of an $325/day observer cost with 2010 trip revenue (from dealer data) and cost information (from observer data) from 2010 observer data of longfin squid trips by vessels that had at least 100,000 pounds of longfin squid landings in at least one year from 2007-2010 (87% of total 2007-2010 landings) or those that had at least 20,000 pounds of longfin squid landings in at least one year 2007-2010 (9% of total landings). Since trips with 50% longfin squid also account for over 90% of longfin squid landings, these criteria was also used to identify the primary squid vessels’ squid trips. Almost all of the longfin squid landings are associated with bottom trawl gear. 2007 was selected as a start year because in that year the fishery switched from quarterly quotas to trimester quotas.

Table 67. Longfin Squid Trawl Costs and Revenues

<table>
<thead>
<tr>
<th></th>
<th>100,000 + in one year 2007 - 2010</th>
<th>20,000 + in one year 2007-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bottom Trawl</td>
<td>Bottom Trawl</td>
</tr>
<tr>
<td>Average Days</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg Revenue/Day</td>
<td>5,249</td>
<td>1,700</td>
</tr>
<tr>
<td>Avg cost/Day</td>
<td>939</td>
<td>424</td>
</tr>
</tbody>
</table>

Based on this data, adding $325/day would increase trip costs by 35% for the primary bottom trawlers (about 98 vessels). For the secondary vessels however, adding $325/day would increase their costs by 77%.

Depending on which alternative one is considering, the observer costs would apply to 25%, 50%, 75%, or 100% of vessels trips. While over time one would expect roughly even distribution among vessels (assuming 100% coverage is not attained), within a year some vessels may be randomly selected more often than others and bear a disproportionate share of the increased
observer costs. Also, among these vessels both costs and revenue vary so some vessels may be disproportionately affected compared to other vessels.

The approximate cost for an observer is $800/day. In addition to at-sea costs, NMFS has estimated that it incurs approximately $400/day in administrative costs related to each additional day at sea.

While the per trip costs are most relevant to vessels, total costs can also be considered. Since coverage in this alternative would be related to 2,500 pound longfin squid trips, 2006-2010 VTR data was analyzed to determine the approximate number of seadays fished on SMBT trips that kept 2,500 pounds of more of longfin squid. These trips averaged 5,357 seadays each year ranging from 3,932 in 2010 to 6,743 in 2006. If 25%, 50%, 75%, or 100% of the average seadays (5,357) were observed it would require 1339, 2678, 4017, and 5,357 sea days respectively. Multiplying these days by $325/day results in at-sea costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.4 million, $0.9 million, $1.3 million, and $1.7 million per year respectively. Multiplying these days by $400/day results in administrative costs for 25%, 50%, 75%, or 100% coverage of the average seadays of approximately $0.5 million, $1.1 million, $1.6 million, and $2.1 million per year respectively. However, there may be returns to scale in the sense that at higher coverage levels NMFS marginal costs may become less than $400/day.

While there are human community costs there also could be human community benefits. To the extent that these alternatives lead to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other non-target species, then choosing this action alternative in comparison to the no-action alternative might result in additional benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
5e. Strata-Fleet-Based Alternatives

On a fleet level, catch estimates of river herrings are often imprecise. The following sub-alternatives would require coverage levels that would be expected to result in the specified C.V. levels for river herrings. Shad were not included because very high coverage levels would be required to achieve the respective C.V.s due to even less frequent encounters with shads.

5e1. Require NMFS to allocate sea days such that Mid-Atlantic alewife and blueback catch C.V.s for MWT would each be expected to be at or below 0.30.

5e2. Require NMFS to allocate sea days such that Mid-Atlantic alewife and blueback catch C.V.s for MWT would each be expected to be at or below 0.20.

5e3. Require NMFS to allocate sea days such that alewife and blueback catch C.V.s for SMBT would each be expected to be at or below 0.30.

5e4. Require NMFS to allocate sea days such that alewife and blueback catch C.V.s for SMBT would each be expected to be at or below 0.20.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative for the MWT C.V. targets related to improved monitoring of discards of the managed resources, but given there are no major reported issues with discarding of the managed species by MWT gear, impacts would be expected to be low. A positive impact would be expected compared to the no-action alternative for the SMBT C.V. targets related to improved monitoring of butterfish discards since butterfish discards are a major concern in SMBT gear, especially when that gear is used to target longfin squid.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A positive impact would be expected compared to the no-action alternative. To the degree that better (more precise) data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. A C.V. of 0.30 means that the true value has approximately a 95% probability of being within ± 60% of the estimate. A C.V. of 0.20 means that the true value has approximately a 95% probability of being within ± 40% of the estimate (both assuming a normal distribution of data). Also, since some sources of uncertainty are not integrated into the C.V. calculations, the C.V.s generated by the science center are lower (look better) than they really are. As described above, since obtaining a given C.V. can require very different coverage levels from year to year, and the inter-annual variability in the data drives the precision, it may be quite difficult to consistently obtain precise catch estimates via observer data when the coverage levels are determined from prior years’ data. Since 5b, 5c, and 5d require coverage based on directed trip definitions and not all activity in MWT and SMBT fishing is associated with the MSB trip definitions considered in 5b, 5c, and 5d, the two
alternatives are not directly comparable. One could require coverage levels in 5b, 5c, and 5d but still be very unsure of what the gear-based C.V. will be because of other fisheries that use the same gear (e.g. Atl herring for MWT and whiting for SMBT). However, this alternative (5e) may be thought of as more comprehensive since it encompasses all fishing activity to achieve a C.V. for a particular gear type. This raises implementation problems though, which are described below in the human community section.

3. Habitat Impacts Including EFH

Neutral or negligible impacts would be expected compared to the no-action alternative if vessels do not have to pay for observer coverage (which is considered in other alternatives). In this case overall effort should not be impacted. If vessels have to pay for observer coverage then a potentially positive impact would be expected compared to the no-action alternative because having to pay for observers could discourage effort. These impacts would be focused on SMBT effort since MWT gear does not generally contact the bottom.

4. Protected Resources

Neutral or negligible direct impacts would be expected compared to the no-action alternative if vessels do not have to pay for observer coverage (which is considered in other alternatives). In this case overall effort should not be impacted. If vessels have to pay for observer coverage then overall effort could be discouraged which could lead to positive impacts compared to the no-action alternative. Higher coverage would generate better data on protected resource interactions.

5. Human Communities

The impacts of this alternative in comparison to the no-action alternative appear mixed with uncertain net impacts. On one hand the costs to fishery participants of paying for the additional monitoring requirements would be a negative impact. NMFS has stated that to be approved any increased observer coverage must be funded by industry. Table 11, reproduced from Section 5.5, details the sea days required for C.V. targets under consideration.

Table 67b. Sea days associated with Alt. 5e C.V. targets.

<table>
<thead>
<tr>
<th></th>
<th>Mid-Atlantic MWT (CV = 0.3)</th>
<th>Mid-Atlantic MWT (CV = 0.2)</th>
<th>SMBT (CV = 0.3)</th>
<th>SMBT (CV = 0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Sea Days (2009)</td>
<td>541</td>
<td>751</td>
<td>3610</td>
<td>4889</td>
</tr>
<tr>
<td>Required Sea Days (2010)</td>
<td>308</td>
<td>409</td>
<td>2542</td>
<td>3982</td>
</tr>
<tr>
<td>Approx Days Provided in 2010</td>
<td>65</td>
<td></td>
<td>1132</td>
<td></td>
</tr>
</tbody>
</table>

As with the figures above for the fishery-trip-based coverage levels, the number can fluctuate from year so one can never really guarantee a given C.V. will be reached. It may be quite difficult to consistently obtain precise catch estimates via observer data when the coverage levels are determined from prior years’ data for species that are not encountered that often in consistent quantities. However, the numbers in the table above suggest that around 65% coverage could
result in a 0.3 C.V. goal and about 90% coverage could result in a 0.2 C.V. goal for Mid-Atlantic MWT and that for small mesh bottom trawl, around 40% coverage could result in a 0.3 C.V. goal and about 60% coverage could result in a 0.2 C.V. goal. This was determined by averaging the required sea days from 2009-2010, and then comparing those averages with total average days at sea for relevant trips from VTR data, 2009-2010. However it is emphasized that from year to year it will be very hard to hit a particular C.V. target due to the inherent variability from year to year in both the directed fisheries involved and their catch of river herrings. Since one cannot predict which years will require the highest coverage, some years would likely be over covered and some years would be under covered if coverage rates are determined by the previous year’s data.

Compared to the approximate sea days provided in 2010, achieving a 0.3 C.V. for both blueback herring and alewife in the Mid-Atlantic for MWT would require 232-476 extra sea days (costing about $0.2-$0.4 million) and achieving a 0.2 C.V. for both blueback herring and alewife in the Mid-Atlantic for MWT would require 686-344 extra sea days (costing about $0.3-$0.5 million), with at sea costs being $800/day. Administrative costs to NMFS would equal an additional 50% of the at-sea costs ($400/day). The range is related to the fact that C.V.s vary from year to year related to variation in the underlying data.

Compared to the approximate sea days provided in 2010, achieving a 0.3 C.V. for both blueback herring and alewife in the SMBT (Mid-Atlantic and New England) would require 1,410-2,478 extra sea days (costing about $1.1-$2.0 million) and achieving a 0.2 C.V. for both blueback herring and alewife in the Mid-Atlantic for MWT would require 2,850-3,757 extra sea days (costing about $2.3-$3.0 million), with at sea costs being $800/day. Administrative costs to NMFS would equal an additional 50% of the at-sea costs ($400/day). The range is related to the fact that C.V.s vary from year to year related to variation in the underlying data.

A key issue with implementation of this alternative is that while the alternative is based on gear types which is how discard and catch estimates based on observer coverage are binned to get total estimates, the MAFMC can really only compel the fisheries it manages to carry and pay for observers. Since NMFS has indicated that it will only approve additional observer coverage on fisheries if it is funded by industry, and the MAFMC cannot compel fisheries out of its control to carry and pay for observers, there is a procedural tension inherent in this alternative.

What could occur if this alternative is selected, is that NMFS would use its observer allocation procedures to allocate the approximate level of coverage in the MSB fisheries (mackerel and longfin squid) that would be needed as part of achieving the overall C.V. targets. So if this alternative was recommended, New England fisheries that use the relevant gear types would not be affected so the C.V. targets would not actually be reached (but they would be improved related to increases in MSB fisheries). If New England approved measures consistent with these C.V. targets (including industry funding), the tension would be resolved however as all of the major fisheries with substantial RH catch would be covered.

The impact of adding observer costs on mackerel and longfin squid trips has already been described in alternatives 5b-5d. As discussed above, analysis suggests that around 65% coverage could result in a 0.3 C.V. goal and about 90% coverage could result in a 0.2 C.V. goal
for Mid-Atlantic MWT and that for small mesh bottom trawl, around 40% coverage could result in a 0.3 C.V. goal and about 60% coverage could result in a 0.2 C.V. goal. Analyses for alternatives 5b-5d above describe the total costs for 25%, 50%, 75%, or 100% coverage levels in MAFMC fisheries so approximate total costs for 65% and 90% of MWT mackerel trips and 40% and 60% of SMBT mackerel and longfin squid trips can be interpolated from the impact analysis above for 5b-5d.

As also detailed in 5b-5d and perhaps more important for understainding the impact of paying for observer cost, on a per day basis adding $325/day to the cost of a trip adds the following to the daily costs of mackerel and longfin squid trips based on 2010 observer data (which collects cost information):

-9% for single MWT mackerel trips (from $3,494 per day to $4,294)
-12% for paired MWT mackerel trips (from $2,602 per day to $3,402)
-20% for higher volume SMBT mackerel trips (from $1,639 per day to $2,439)
-35% for higher volume SMBT longfin squid trips (from $939 per day to $1,739)
-77% for lower volume SMBT longfin squid trips (from $424 per day to $1,224)

The average trip cost values cited in this analysis include variable costs such as fuel, oil, ice, food, fishing supplies, vessel/gear damages, and water but does not include crew shares/wages, dockage fees, or boat mortgage payments. Trip costs were estimated based on 2010 observer data. Observers ask for information on these costs and vessels were binned by gear, vessel size, and day/multi-day vessels.

While there are human community costs there also could be human community benefits. To the extent that these alternatives lead to better data, and to the extent that better data leads to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other non-target species, then choosing this action alternative in comparison to the no-action alternative might result in additional benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since the alternatives in this alternative set are related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternative sets that deal with management measures that may utilize better data.
5f. Vessels would have to pay $325 (modifiable via specifications) for observers when they carry observers to meet the observer coverage goals adopted by the Council in 5b4 and 5c4. NEFSC would accredit observers and vessels would have to contract and pay observers. (PREFERRED)

Since NMFS has indicated that industry funding of additional observer coverage would be a prerequisite to increasing observer coverage, the impacts of industry paying for observer coverage have been described in each of the action alternatives 5b-5e above. The DEIS described costs assuming vessels contributed $800/day but the analysis has been updated to reflect that the Council specified that at least to start, vessels would have to pay $325/day.

5g. Phase-in industry funding over 4 years such that to achieve the target coverage selected in 5b-5e above, NMFS would pay for 100%, 75%, 50%, then 25% of the at-sea portion of the specified observer coverage

NMFS has indicated this is not feasible from a funding point of view. The impacts of this alternative would be the same as the accompanying observer coverage level described in 5b-5e except that costs to the fishery would be less.

If vessels have to pay for observer coverage then a negative impact would be expected compared to the no-action alternative. Alternatives 5b-5d above compare the cost of observer coverage to the revenues from different types of vessels that participate in the mackerel and longfin squid fisheries. Economic costs are discussed within those alternatives assuming that industry funding would be paying for most of the increased observer coverage. In the short term cost-sharing with NMFS would make the economic impacts less negative but would not have an impact on the long term. For this alternative, if NMFS paid 100% of the observer coverage there would be negligible socio-economic impacts in the first year. For the phase in years, the impacts per trip would be the same as described above, but the number of trips for which industry would have to pay for observers would be less initially and increase in years 2, 3, and 4 at which point NMFS would cover 25% of the costs and the fishery would have to cover 75% of the costs.

5h. Require reevaluation of coverage requirement after 2 years to determine if catch rates justify continued expense of continued high coverage rates. (PREFERRED)

The Council would conduct an examination of the results of any higher coverage rates implemented through this action and consider if adjustments to the coverage rates are warranted. Depending on the results and desired actions, subsequent action could be accomplished via specifications, a framework adjustment, or an Amendment as appropriate and would include a separate environmental analysis. No immediate impacts would be expected for any VEC. Any potential follow-up actions would be subsequently analyzed and considered separately.
1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

All of the action alternatives that increase observer coverage (5b-5e) are expected to have positive impacts for butterfish due to discarding concerns that would be alleviated by higher coverage rates, especially in the longfin squid fishery. Low positive impacts would be expected for the other managed resources since discarding is not considered to be a major problem for those resources. 5f-5h are more administrative in function.

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

All of the action alternatives that increase observer coverage (5b-5e) are expected to have positive impacts for non-target species due to catch and discarding concerns that would be alleviated by higher coverage rates. Higher coverage rates will yield more certainty about the nature of catch in the mackerel and longfin squid fisheries and so greater benefits. Positive impacts would appear higher related to mackerel observers since that fishery appears to interact with RH/S more than the longfin squid fishery. 5f-5h are more administrative in function.

3. **Habitat Impacts Including EFH**

None of the action alternatives are expected to directly impact habitat but if vessels had to pay for their observer coverage (which would be necessary for implementation), that could reduce effort which would generally lower habitat impacts.

4. **Protected Resources**

None of the action alternatives are expected to directly impact protected resources but if vessels had to pay for their observer coverage (which would be necessary for implementation), that could reduce effort which would generally lower protected resource interactions. Higher coverage would generate better data on protected resource interactions.

5. **Human Communities**

Human community impacts are mixed depending on which interest group is considered. Commercial participants would incur relatively high costs related to paying for observer coverage (and higher coverage results in higher costs). The interested public would benefit primarily to the extent that better monitoring could lead to better RH/S management.
7.6 Alternative Set 6 - Mortality Caps

Statement of Problem/Need for Action:

There are currently no limits on catch of RH/S in the mackerel and/or longfin squid fisheries other than state landing requirements.

Background:

The alternatives would seek to directly limit the mortality of the relevant RH/S species in the mackerel and longfin squid fisheries. While the actual mortality cap quantities would be determined during the specifications process just as annual ACLs/AMs are set, this document explores a range of options so that likely impacts may be evaluated. The range of mortality cap quantities would be evaluated in an environmental assessment during the specifications process. The following values are primarily provided to give the reader a sense of impacts from a range of mortality caps that will be investigated in greater depth during the specifications process.

A cap on a certain fleet/fishery can keep mortality for the fleet/fishery at a certain level. Given the lack of reference points it would be difficult to establish an appropriate cap amount that is meaningfully tied to some impact on RH/S. One would either have to independently figure out how much overall RH catch one wanted and then allocate a portion of that to a cap or one could just look at what various strata have caught historically, and use that information to come up with an amount for a fishery-specific cap. For the mortality cap alternatives, the MSB Monitoring Committee would draft a range of caps for consideration through specifications via an accompanying Environmental Assessment. Precision would likely be quite low under the current observer/monitoring regime levels of coverage.

A cap on RH/S catch in the mackerel and/or longfin squid fishery would operate much like the butterfish cap currently operates in the longfin squid fishery. A catch ratio would be determined using the best available scientific data. As with the butterfish cap, the exact monitoring and extrapolation methodology would be developed during implementation and presented to the Council for comments before the cap became operational. However, the catch ratio would be based on the ratio of RH/S to total retained catch, as appropriate depending on which, if any, action alternatives were chosen. This ratio comes from observer data in the butterfish cap and in the context of this amendment could come from observer data or potentially also port-side sampling data if implemented in this amendment. Then for a given fishery (mackerel or squid) as defined by trips over the incidental landings limit, the ratio is applied to all landings (from dealer data) by that fishery to extrapolate a total RH/S catch estimate. Technical details may be found in Wigley et al. (2007), with the modification of using “kept+discards” in the numerator rather than just discards. Once the estimate reaches a closure threshold identified by the Council in the specifications process, then landings above an incidental nature (also specified during specifications) would be prohibited. The mortality cap would operate in parallel to monitoring for the directed fishery such that reaching either the closure threshold for the directed fishery or the mortality cap threshold would close the directed fishery.
It would probably make more sense to have a fleet-area cap (e.g., midwater trawls in Mid-Atlantic) rather than using the regulatory definition of a "Mackerel" or "Herring" trip to define vessels that are subject to the cap. In other words, the greatest amount of impact on RH/S catch reduction would come from the implementation of a joint cap on both the herring & mackerel fleets. If one instituted just a cap on the mackerel fleets, one of two things could happen if the mackerel fishery was closed due to reaching the cap:

One possibility: the mackerel fishery closes and the exact same fleet continues fishing in the exact same place (Mid-Atlantic Q1) and just retains the Atlantic herring catches and discards mackerel (mackerel discards are addressed with a set-aside in the specifications process). Since retained catch per unit effort of the combined species would go down, overall effort could go up, possibly increasing RH/S catch.

Other possibility: Q1 catches of mackerel and Atlantic herring in the Mid-Atlantic are so mixed that closing mackerel would effectively close herring.

Amendment 5 to the Atlantic Herring FMP proposes allowing caps to be implemented via a framework or specifications and it is possible that in the future a gear/based cap could be coordinated through the NEFMC and MAFMC.

For all of the mortality caps, once the cap or some fraction of the cap is reached (set in specifications) then the fishery would be closed or an incidental trip limit would go into effect (also set in specifications).

NOTE ON COMBINATIONS: All of the action alternatives in this Alternative Set could be implemented singly or in combination with any other alternative(s) in this Alternative Set.

When comparing alternatives relative to the mackerel fishery or the longfin squid fishery, the mackerel alternatives are likely to have a greater positive impact on RH/S because substantially more RH/S appear to be caught in the mackerel fishery, but it is not possible to quantify the differential in potential benefits.

6a. No-action

If this alternative is selected, then no measures from Alternative Set 6 would be implemented and the existing state management measures (as described in section 5.9) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below. While this section focuses on incremental impacts, cumulative impacts are discussed in Section 8.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A potentially negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 6 could result in early closures of the fisheries for mackerel and
longfin squid, such closures would lead to less mortality of those species. However, catching the full quota of the managed species is not expected to cause sustainability problems for the managed species so impacts are low. If the longfin squid fishery is closed early, there would likely be benefits to butterfish given the relatively high catch rates of butterfish in the longfin squid fishery.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 6 could result in early closures of the fisheries for mackerel and longfin squid, such closures would lead to less mortality of non-target species including RH/S. However, the current impacts on RH/S of the mackerel and longfin squid fisheries are not known so impacts are not quantifiable.

3. Habitat Impacts Including EFH

A potentially negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 6 could result in early closures of the fisheries for mackerel and longfin squid, such closures could lead to less negative habitat impacts, especially related to the longfin squid fishery which primarily uses bottom otter trawl gear. Participants could redirect toward other species in the same or other areas since most participants have multiple permits, but it is not possible to predict such shifts and/or any associated habitat impacts.

4. Protected Resources

A potentially negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 6 could result in early closures of the fisheries for mackerel and longfin squid, such closures could lead to less protected resource interactions (see Section 6 for details on such interactions). Participants could redirect toward other species in the same or other areas since most participants have multiple permits, but it is not possible to predict such shifts and/or any associated protected resource impacts.

5. Human Communities

The impacts of the no-action alternative in comparison to the other alternatives for human communities appear mixed with uncertain net impacts. On one hand, fishery participants would not experience revenue loss as a result of fishery closures based on the RH/S cap, which is a positive impact.

On the other hand, to the extent that these alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S, then choosing the no-action alternative in
comparison to the other alternatives might result in foregone benefits related to lost commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. However, the actual rebuilding of RH/S runs to optimally productive levels would be expected to lead to substantial positive benefits. These fisheries have supported thriving (if seasonal) commercial and recreational fisheries in the past. Public interest in this amendment demonstrates that the general public holds a certain value for the knowledge that these fisheries are being sustainably managed, and even if each individual's value is small the total public value may be quite large. If limiting RH/S catch through this alternative set led to rebuilding then the benefits of the action alternatives would be large. If limiting RH/S catch through this alternative set did not substantially lead to rebuilding (i.e. other factors are primarily to cause for RH/S declines - see sections 6.2.5 and 6.2.6) then the benefits of the action alternatives would be minor. Future research may provide information on what factors are primarily responsible to RH/S declines but currently that information is not available.

<table>
<thead>
<tr>
<th>6b. Implement a mortality cap for river herrings for the mackerel fishery whereby the mackerel fishery would close once it is determined that it created a certain level of river herring mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S). (PREFERRED)</th>
</tr>
</thead>
</table>

One way to assign mortality caps for river herring would be to base it on the range of estimated river herring mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic mid-water trawl fishing in Quarter 1, which is largely but not completely mackerel fishing, accounted for 35% of total river herring mortality 2005-2010. The table below describes total ocean and quarter 1 mid-water trawl mortalities in the leftmost columns.

Using the separate ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 50% or at least 100,000 pounds of mackerel (encompasses almost all landings) results in annual river herring mortality ratios from 0.02% in 2007 to .86% in 2009 with a mean of 0.45 (% of total catch). The 50%/100,000 filter was used because it has been the way directed mackerel trips have been identified in recent specifications analyses and because this definition encompasses almost all landings. The exact definition of a mackerel trip would be developed in the implementation process, as has been the case with the butterfish cap for the longfin squid fishery.

In the right hand columns are the landings at which point the mackerel fishery would close depending on the above range of ratios and if the cap was the quarter 1 value. For example, if a cap of 86 mt was used, the mackerel fishery would close when it landed 9,975 mt with a high ratio, 19,063 mt with the mean ratio, or 428,908 mt of fish with a low ratio. Without an
assessment providing advice on overall acceptable fishing mortality, the Council would have to make a policy decision about how much catch to allow in this fishery and would evaluate a range of caps, probably based on recent catch estimates as done in the table below.

Table 68. Example River Herring Caps for Mackerel

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Water Trawl Quarter 1 mortality (mt) (35% of total) = Mortality Cap Possibility</th>
<th>Mackerel would close at these landings (mt) with high ratio, 0.86%</th>
<th>Mackerel would close at these landings (mt) with mean ratio, 0.45%</th>
<th>Mackerel would close at these landings (mt) with low ratio, 0.02%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>245</td>
<td>86</td>
<td>9,975</td>
<td>19,063</td>
<td>428,908</td>
</tr>
<tr>
<td>2007</td>
<td>664</td>
<td>232</td>
<td>27,029</td>
<td>51,656</td>
<td>1,162,263</td>
</tr>
<tr>
<td>2008</td>
<td>672</td>
<td>235</td>
<td>27,333</td>
<td>52,237</td>
<td>1,175,335</td>
</tr>
<tr>
<td>2009</td>
<td>361</td>
<td>126</td>
<td>14,679</td>
<td>28,053</td>
<td>631,190</td>
</tr>
<tr>
<td>2010</td>
<td>244</td>
<td>85</td>
<td>9,911</td>
<td>18,940</td>
<td>426,160</td>
</tr>
</tbody>
</table>

Source: Unpublished observer data and Appendix 2.

A high ratio means that more river herring were caught and a low ratio means that less river herring were caught. The examples in the above table come from observed data 2006-2010. The main point is that whether mackerel would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of river herring was, and what the mackerel availability was. Since the realized ratio can vary substantially from year to year, it is difficult to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all. If the ratio is very low, the fishery would be allowed to continue operating, as a closure would occur at a landings level much higher than recent quotas. If the ratio is very high, a closure could occur early in the season. Additional impact analysis would be carried out by the specifications that implemented these caps.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative. If the directed fishery is closed because of a mortality cap the managed species may also benefit because of reduced fishing mortality. However, given the uncertainty about MSB stock dynamics and the uncertainty about when a closure might occur it is not possible to quantify such impacts. In general, if the cap is set higher, or the ratio (catch rate of RH/S) is lower, the directed fishery will stay open longer, which will result in less positive impacts for the managed species. Conversely, if the cap is set lower, or the ratio is higher, the directed fishery will close sooner, which will result in more positive impacts for the managed species. If the cap does not result in a closure then there will be no impacts on managed resources compared to the no-action alternative. Since taking the full quota of the directed species should not impact the sustainability of the managed resource, impacts to the managed resource should be low compared to the no action alternative.
2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially positive impact would be expected compared to the no-action alternative. If a low cap is chosen, for example 86 mt, and a high ratio (catch rate of RH/S) is observed, for example 0.86%, then the fishery would be closed at 9,975 mt total landings (of which a portion is mackerel). In some years this value may be negligibly constraining but in years where mackerel were available (e.g. 2004/2006) it could be quite constraining. If mackerel closed earlier than it otherwise would there would likely be less catch of river herrings (and other non-target species) but it is not possible to quantify the effect (if any) on river herring stocks of catching only 86 mt of river herring versus some other amount due to the paucity of assessment information. Given the uncertainty of cap amounts and/or encounter rates it is not possible to quantify the impacts but the lower the cap is set, or the higher the ratio is, the shorter the directed fishery will stay open and more potentially positive impacts will occur to non-target species, including RH/S, because non-target species mortality in the directed fishery may be reduced. If there was no closure then the impacts on non-target species including RH/S would be the same as described in the no-action alternative. It should be noted that the connection between catch in the mackerel fishery (or other ocean fisheries) and RH/S populations is unknown.

3. Habitat Impacts Including EFH

A neutral or negligible impact would be expected compared to the no-action alternative. Since the majority of mackerel landings are made with mid-water gear, which generally does not contact the bottom, reductions in mackerel effort due to a cap closure would not be expected to have any impacts on habitat. There is some directed bottom trawling for mackerel but not enough for there to be more than negligible impacts. Depending on the final regulations, closure of the mackerel fishery due to the mortality cap would likely result in a reduction of the mackerel possession limit to the incidental level (20,000 lb), rather than a full prohibition on mackerel possession. Accordingly, any habitat benefits related to reduced effort during a closure may be offset by some smaller-scale bottom trawlers who decide to pursue mackerel under the incidental trip limits (to take advantage of the cut-off supply and possibly higher prices). Thus, overall effort that contacts the bottom may be level, suggesting a neutral and/or negligible impact to habitat compared to the no action alternative.

4. Protected Resources

A potentially positive impact would be expected compared to the no-action alternative. If the directed fishery is closed earlier than would otherwise occur because of a mortality cap, protected species benefit due to the reduction in effort. In general, the higher the cap is set, or the lower the ratio (catch rate of RH/S) is, the longer the directed fishery will stay open and less positive impacts occur for protected resources because of continued potential interactions. The lower the cap is set, or the higher the ratio is, the shorter the directed fishery will stay open and more positive impacts for protected species will occur. If there was no closure then the impacts on protected resources would be the same as described in the no-action alternative.
5. Human Communities

A potentially high negative impact would be expected for mackerel fishery participants compared to the no-action alternative if a low cap is chosen, for example 85 mt, and a high ratio (catch rate of RH/S) is observed, for example 0.86%. In such a case then the fishery would be closed at 9,911 mt total catch. In recent years this value may be negligibly constraining but in years where mackerel were available (e.g. 2004/2006) it could be quite constraining. If mackerel closed earlier than it otherwise would there would be associated forgone revenues, with the amount depending on the cap amount, the ratio of river herring observed caught (catch rate of RH), and the availability of mackerel. If the cap is set high enough or the ratio is low enough there would be no losses because the cap would not result in a closure of the directed fishery, and would thus not constrain fishing activity. However, relative to the 2012 proposed landings quota of 33,821 mt, if the mackerel fishery faced the relatively low cap and relatively high catch ratio described above, and was limited to 9,911 mt of catch, 23,910 mt of catch could potentially be forgone. At 2010 ex-vessel prices, 23,910 mt of mackerel would be worth $7.7 million. While the mackerel fishery has not been catching these levels in recent years (see section 6.7.1), these would be an example of potentially forgone revenues in a relatively low cap and relatively high catch ratio situation. If a cap was set lower than 85 mt, or the actual observed ratio was higher, forgone revenue could be higher as well. While a multiplier has not been calculated for mackerel to determine impacts to shore-side businesses, Amendment 10 to the MSB FMP estimated that for longfin squid, dealers lost an amount equal to 73% of the revenue lost by vessels and all shoreside business combined lost an amount equal to 3 times the amount lost by vessels.

Under recent sampling intensities, C.V.s for annual river herring estimates have been improving but at the fine scale necessary to close the directed mackerel fishery C.V.s related to a mortality cap are likely to be over 1.0 (see table A2 in Appendix 2). Given C.V.s over 0.5 translate into the value of zero being within the 95% confidence interval, it may be difficult to justify closing a fishery given the science tells us our estimates are likely very inaccurate in any given year. The estimates’ uncertainty also makes it difficult for business planning purposes if highly uncertain estimates may be causing fishery closures.

While there are human community costs there also could be human community benefits. To the extent that these alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other non-target species, then choosing this action alternative in comparison to the no-action alternative might result in additional benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. However, the actual rebuilding of RH/S runs to optimally productive levels would be expected to lead to substantial positive benefits. These fisheries have supported thriving (if seasonal) commercial and recreational fisheries in the past. Public interest in this amendment demonstrates that the general public holds a certain value for the knowledge that these fisheries are being sustainably managed, and even if each individual's value is small the total public value may be quite large. If limiting RH/S catch through this alternative set led to
rebuilding then the benefits of the action alternatives would be large. If limiting RH/S catch through this alternative set did not substantially lead to rebuilding (i.e. other factors are primarily to cause for RH/S declines - see sections 6.2.5 and 6.2.6) then the benefits of the action alternatives would be minor. Future research may provide information on what factors are primarily responsible to RH/S declines but currently that information is not available.

6c. Implement a mortality cap for shads for the mackerel fishery whereby the mackerel fishery would close once it is determined that it created a certain level of shad mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S). (PREFERRED)

One way to assign mortality caps for shad would be to base it on the range of estimated river herring mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic mid-water trawl fishing in Quarter 1, which is largely but not completely mackerel fishing, accounted for 12% of total shad mortality 2005-2010. The table below describes total ocean and quarter 1 mid-water trawl mortalities in the leftmost columns (2006 omitted because of lack of shad records).

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Ocean Mortality</th>
<th>Quarter 1 Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>12,000</td>
<td>1,440</td>
</tr>
<tr>
<td>2006</td>
<td>12,000</td>
<td>1,440</td>
</tr>
<tr>
<td>2007</td>
<td>12,000</td>
<td>1,440</td>
</tr>
<tr>
<td>2008</td>
<td>12,000</td>
<td>1,440</td>
</tr>
<tr>
<td>2009</td>
<td>12,000</td>
<td>1,440</td>
</tr>
</tbody>
</table>

Using the separate ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 50% or at least 100,000 pounds of mackerel (encompasses almost all landings) results in annual shad mortality ratios from 0.004% in 2009 to 0.05% in 2007 with a mean of 0.03. The 50%/100,000 filter was used because it has been the way directed mackerel trips have been identified in recent specifications analyses and because this definition encompasses almost all landings. The exact definition of a mackerel trip would be developed in the implementation process, as has been the case with the butterfish cap for the longfin squid fishery.

In the right hand columns are the landings at which point the mackerel fishery would close depending on the above range of ratios and if the cap was the quarter 1 value. For example, if a cap of 7mt was used, the mackerel fishery would close when it landed 14,364 mt with a high ratio, 23,940mt with the mean ratio, or 179,550 mt of fish with a low ratio. The differences in the two 7mt caps are due to rounding. Without an assessment providing advice on overall acceptable fishing mortality, the Council would have to make a policy decision about how much catch to allow in this fishery and would evaluate a range of caps, probably based on recent catch estimates as done in the table below.
Table 69. Example Shad Caps for Mackerel

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Water Trawl Quarter 1 Mortality (mt) (12% of total) = Mortality Cap Possibility</th>
<th>Mackerel would close at these landings (mt) with high ratio, 0.05%</th>
<th>Mackerel would close at these landings (mt) with mean ratio, 0.03%</th>
<th>Mackerel would close at these landings (mt) with low ratio, 0.004%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>60</td>
<td>7</td>
<td>14,364</td>
<td>23,940</td>
<td>179,550</td>
</tr>
<tr>
<td>2008</td>
<td>60</td>
<td>7</td>
<td>14,450</td>
<td>24,084</td>
<td>180,630</td>
</tr>
<tr>
<td>2009</td>
<td>70</td>
<td>8</td>
<td>16,903</td>
<td>28,172</td>
<td>211,290</td>
</tr>
<tr>
<td>2010</td>
<td>47</td>
<td>6</td>
<td>11,338</td>
<td>18,896</td>
<td>141,720</td>
</tr>
</tbody>
</table>

Source: Unpublished observer data and Appendix 2.

A high ratio means that more shad were caught and a low ratio means that less shad were caught. The examples in the above table come from observed data 2006-2010. The main point is that whether mackerel would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of shad was, and what the mackerel availability was. Since the realized ratio can vary substantially from year to year, it is difficult to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all. If the ratio is very low, the fishery would be allowed to continue operating, as a closure would occur at a landings level much higher than recent quotas. If the ratio is very high, a closure could occur early in the season. Additional impact analysis would be carried out by the specifications that implemented these caps.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative. If the directed fishery is closed because of a mortality cap the managed species may also benefit because of reduced fishing mortality. However, given the uncertainty about MSB stock dynamics and the uncertainty about when a closure might occur it is not possible to quantify such impacts. In general, if the cap is set higher, or the ratio (catch rate of RH/S) is lower, the directed fishery will stay open longer, which will result in less positive impacts for the managed species. Conversely, if the cap is set lower, or the ratio is higher, the directed fishery will close sooner, which will result in more positive impacts for the managed species. If the cap does not result in a closure then there will be no impacts on managed resources compared to the no-action alternative. Since taking the full quota of the directed species should not impact the sustainability of the managed resource, impacts to the managed resource should be low compared to the no action alternative.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially positive impact would be expected compared to the no-action alternative. If a low cap is chosen, for example 6mt, and a high ratio (catch rate of RH/S) is observed, for example 0.05%, then the fishery would be closed at 11,338 mt total landings (of which a portion is mackerel). In some years this value may be negligibly constraining but in years where mackerel
were available (e.g. 2004/2006) it could be quite constraining. If mackerel closed earlier than it otherwise would there would likely be less catch of shads (and other non-target species) but it is not possible to quantify the effect (if any) on shad stocks of catching only 6mt of shad versus some other amount due to the paucity of assessment information. Given the uncertainty of cap amounts and/or encounter rates it is not possible to quantify the impacts but the lower the cap is set, or the higher the ratio is, the shorter the directed fishery will stay open and more potentially positive impacts will occur to non-target species, including RH/S, because non-target species mortality in the directed fishery may be reduced. If there was no closure then the impacts on non-target species including RH/S would be the same as described in the no-action alternative. It should be noted that the connection between catch in the mackerel fishery (or other ocean fisheries) and RH/S populations is unknown.

3. Habitat Impacts Including EFH

A neutral or negligible impact would be expected compared to the no-action alternative. Since the majority of mackerel landings are made with mid-water gear, which generally does not contact the bottom, reductions in mackerel effort due to a cap closure would not be expected to have any impacts on habitat. There is some directed bottom trawling for mackerel but not enough for there to be more than negligible impacts. Depending on the final regulations, closure of the mackerel fishery due to the mortality cap would likely result in a reduction of the mackerel possession limit to the incidental level (20,000 lb), rather than a full prohibition on mackerel possession. Accordingly, any habitat benefits related to reduced effort during a closure may be offset by some smaller-scale bottom trawlers who decide to pursue mackerel under the incidental trip limits (to take advantage of the cut-off supply and possibly higher prices). Thus, overall effort that contacts the bottom may be level, suggesting a neutral and/or negligible impact to habitat compared to the no action alternative.

4. Protected Resources

A potentially positive impact would be expected compared to the no-action alternative. If the directed fishery is closed earlier than would otherwise occur because of a mortality cap, protected species benefit due to the reduction in effort. In general, the higher the cap is set, or the lower the ratio (catch rate of RH/S) is, the longer the directed fishery will stay open and less positive impacts occur for protected resources because of continued potential interactions. The lower the cap is set, or the higher the ratio is, the shorter the directed fishery will stay open and more positive impacts for protected species will occur. If there was no closure then the impacts on protected resources would be the same as described in the no-action alternative.

5. Human Communities

A potentially high negative impact for mackerel fishery participants would be expected compared to the no-action alternative. If a low cap is chosen, for example 6mt, and a high ratio (catch rate of RH/S) is observed, for example 0.05%, then the fishery would be closed at 11,338 mt total catch. In recent years this value may be negligibly constraining but in years where mackerel were available (e.g. 2004/2006) it could be quite constraining. If mackerel closed earlier than it otherwise would there would be associated forgone revenues, with the amount depending on the cap amount, the ratio of shad observed caught (catch rate of shad), and the
availability of mackerel. If the cap is set high enough or the ratio is low enough there would be no losses because the cap would not result in a closure of the directed fishery, and would thus not constrain fishing activity. However, relative to the 2012 proposed landings quota of 33,821 mt, if the mackerel fishery faced the relatively low cap and relatively high catch ratio described above, and was limited to 11,338 mt of catch, 22,483 mt of catch could potentially be forgone. At 2010 ex-vessel prices, 22,483 mt of mackerel would be worth $7.3 million. While the mackerel fishery has not been catching these levels in recent years (see section 6.7.1), these would be an example of potentially forgone revenues in a relatively low cap and relatively high catch ratio situation. If a cap was set lower than 6 mt or the actual observed ratio was higher, forgone revenue could be higher as well. While a multiplier has not been calculated for mackerel to determine impacts to shore-side businesses, Amendment 10 to the MSB FMP estimated that for longfin squid, dealers lost an amount equal to 73% of the revenue lost by vessels and all shoreside business combined lost an amount equal to 3 times the amount lost by vessels.

Under recent sampling intensities, C.V.s for annual shad estimates have been improving but at the fine scale necessary to close “the mackerel fishery” C.V.s related to a mortality cap are likely to be over 1.0 (see table A2 in Appendix 2). Given C.V.s over 0.5 translate into the value of zero being within the 95% confidence interval, it may be difficult to justify closing a fishery given the science tells us our estimates are likely very inaccurate in any given year. The low overall catch of shad and therefore low amount of a cap based on recent catch would likely greatly complicate mortality-cap based management for shad given the imprecision of catch data.

The estimates’ uncertainty also makes it difficult for business planning purposes if highly uncertain estimates may be causing fishery closures.

While there are human community costs there also could be human community benefits. To the extent that these alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other non-target species, then choosing this action alternative in comparison to the no-action alternative might result in additional benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. However, the actual rebuilding of RH/S runs to optimally productive levels would be expected to lead to substantial positive benefits. These fisheries have supported thriving (if seasonal) commercial and recreational fisheries in the past. Public interest in this amendment demonstrates that that the general public holds a certain value for the knowledge that these fisheries are being sustainably managed, and even if each individual's value is small the total public value may be quite large. If limiting RH/S catch through this alternative set led to rebuilding then the benefits of the action alternatives would be large. If limiting RH/S catch through this alternative set did not substantially lead to rebuilding (i.e. other factors are primarily to cause for RH/S declines - see sections 6.2.5 and 6.2.6) then the benefits of the action alternatives would be minor. Future research may provide information on what factors are primarily responsible to RH/S declines but currently that information is not available.
6d. Implement a mortality cap for river herrings for the longfin squid fishery whereby the longfin squid fishery would close once it is determined that it created a certain level of river herring mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S).

One way to assign mortality caps for river herring would be to base it on the range of estimated river herring mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic small mesh bottom trawl accounted for 5% of total river herring mortality. While Mid-Atlantic small mesh bottom trawl encompasses a variety of fisheries besides longfin squid (including Atlantic herring), some of the New England small mesh bottom trawl mortality is probably related to longfin squid fishing so using the full Mid-Atlantic value is probably reasonable. The table below describes total ocean and 5% of total mortalities in the leftmost columns.

Using the separate ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 2,500 pounds longfin squid results in annual river herring mortality ratios from almost zero in 2007 to .17% in 2009 with a mean of 0.06%. The 2,500 pound filter was used because it has been the way directed longfin squid trips have been identified in the butterfish cap for the longfin squid fishery and because it encompasses almost all longfin squid landings. The exact definition of a longfin squid trip would be developed in the implementation process, as has been the case with the butterfish cap for the longfin squid fishery.

In the right hand columns are the landings at which point the longfin squid fishery would close depending on the above range of ratios and if the cap was the Mid-Atlantic small mesh bottom trawl portion of total ocean fishing mortality. For example, if a cap of 12mt was used, the longfin squid fishery would close when it landed 7,233 mt with a high ratio, and 20,424mt with the mean ratio (the low ratio was nearly zero so it would not lead to a constraint). Without an assessment providing advice on overall acceptable fishing mortality, the Council would have to make a policy decision about how much catch to allow in this fishery and would evaluate a range of caps, probably based on recent catch estimates as done in the table below.
Table 70. Example River Herring Caps for longfin squid.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Atlantic Small Mesh Bottom Trawl mortality (mt) (5% of total) = Mortality Cap Possibility</th>
<th>Longfin squid would close at these landings (mt) with high ratio, 0.17%</th>
<th>Longfin squid would close at these landings (mt) with mean ratio, 0.06%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>245</td>
<td>12</td>
<td>7,233</td>
<td>20,424</td>
</tr>
<tr>
<td>2007</td>
<td>664</td>
<td>33</td>
<td>19,534</td>
<td>55,346</td>
</tr>
<tr>
<td>2008</td>
<td>672</td>
<td>34</td>
<td>19,754</td>
<td>55,968</td>
</tr>
<tr>
<td>2009</td>
<td>361</td>
<td>18</td>
<td>10,608</td>
<td>30,057</td>
</tr>
<tr>
<td>2010</td>
<td>244</td>
<td>12</td>
<td>7,162</td>
<td>20,293</td>
</tr>
</tbody>
</table>

Source: Unpublished observer data and Appendix 2.

If these values were used with the above range of mortality caps, the amount of total fish (the ratio is based on all fish retained) that could be harvested by trips as defined above before the longfin squid fishery was shut down by the river herring mortality cap is illustrated on the rightmost columns in the above table (these can be compared to recent landings detailed in Section 6.6). A high ratio means that more river herring were caught and a low ratio means that less river herring were caught. The examples in the above table come from observed data 2006-2010. The main point is that whether longfin squid would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of river herring was, and what the longfin squid availability was. Since the realized ratio can vary substantially from year to year, it is difficult to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all. If the ratio is very low, the fishery would be allowed to continue operating, as a closure would occur at a landings level much higher than recent quotas. If the ratio is very high, a closure could occur early in the season. Additional impact analysis would be carried out by the specifications that implemented these caps.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative. If the directed fishery is closed because of a mortality cap the managed species may also benefit because of reduced fishing mortality. However, given the uncertainty about MSB stock dynamics and the uncertainty about when a closure might occur it is not possible to quantify such impacts. In general, if the cap is set higher, or the ratio (catch rate of RH/S) is lower, the directed fishery will stay open longer, which will result in less positive impacts for the managed species. Conversely, if the cap is set lower, or the ratio is higher, the directed fishery will close sooner, which will result in more positive impacts for the managed species. If the cap does not result in a closure then there will be no impacts on managed resources compared to the no-action alternative. Since taking the full quota of the directed species should not impact the sustainability of the managed resource, impacts to the managed resource should be low.
compared to the no action alternative. If the longfin squid fishery is closed early, there would likely be positive impacts to butterfish given the relatively high catch rates of butterfish in the longfin squid fishery.

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A potentially positive impact would be expected compared to the no-action alternative. If a low cap is chosen, for example 12mt, and a high ratio (catch rate of RH/S) is observed, for example 0.17%, then the fishery would be closed at 7,233 mt total landings (of which a portion is longfin squid), which would be constraining in most years. If longfin squid closed earlier than it otherwise would there would likely be less catch of river herrings (and other non-target species) but it is not possible to quantify the effect (if any) on river herring stocks of catching only 12mt of river herring versus some other amount due to the paucity of assessment information. Given the uncertainty of cap amounts and/or encounter rates it is not possible to quantify the impacts but the lower the cap is set, or the higher the ratio is, the shorter the directed fishery will stay open and more potentially positive impacts will occur to non-target species, including RH/S, because non-target species mortality in the directed fishery may be reduced. If there was no closure then the impacts on non-target species including RH/S would be the same as described in the no-action alternative. It should be noted that the connection between catch in the longfin squid fishery (or other ocean fisheries) and RH/S populations is unknown.

However, targeting information collected by NEFOP observers suggests that only a small portion of small mesh bottom trawl catches of RH/S are actually from longfin squid-targeted tows with herring accounting for most followed by mackerel and silver hake. While these are not extrapolated catches, and target species is self-reported to observers prior to each tow, on a relative basis the information suggests that the longfin squid fishery may not actually be accounting for that much RH/S catch, which is consistent with the directed-trip based analysis conducted annually for the specifications’ environmental assessment (provided above in section 6.3).

3. **Habitat Impacts Including EFH**

A potentially positive impact would be expected compared to the no-action alternative. Since the longfin squid fishery primarily uses bottom otter trawl, if a mortality cap closed the longfin squid fishery early there should be less adverse habitat impacts, especially in the winter/spring offshore fishery that occurs in deeper water (the summer fishery mostly takes place in sandy areas that are subject to a high level of natural disturbance). If there was no closure then there would be no impacts compared to the no-action alternative.
4. **Protected Resources**

A potentially positive impact would be expected compared to the no-action alternative. If the directed fishery is closed earlier than would otherwise occur because of a mortality cap, protected species benefit due to the reduction in effort. In general, the higher the cap is set, or the lower the ratio (catch rate of RH/S) is, the longer the directed fishery will stay open and less positive impacts occur for protected resources because of continued potential interactions. The lower the cap is set, or the higher the ratio is, the shorter the directed fishery will stay open and more positive impacts for protected species will occur. If there was no closure then the impacts on protected resources would be the same as described in the no-action alternative.

5. **Human Communities**

A potentially high negative impact would be expected compared to the no-action alternative. If a low cap is chosen, for example 12 mt, and a high ratio (catch rate of RH/S) is observed, for example 0.17%, then the fishery would be closed at 7,233 mt total catch. In years where longfin squid were available (e.g. 2004/2005) this could be quite constraining. If longfin squid closed earlier than it otherwise would there would be associated forgone revenues, with the amount depending on the cap amount, the ratio of river herring observed caught (catch rate of RH), and the availability of longfin squid. If the cap is set high enough or the ratio is low enough there would be no losses because the cap would not result in a closure of the directed fishery, and would thus not constrain fishing activity. However, relative to the 2012 proposed landings quota of 22,445 mt, if the longfin squid fishery faced the relatively low cap and relatively high catch ratio described above, and was limited to 7,233 mt of catch, 15,212 mt of catch could potentially be forgone. At 2010 ex-vessel prices, 15,212 mt of longfin squid would be worth $34.8 million. While the longfin squid fishery has not been catching these levels in recent years (see section 6.7.4), these would be an example of potentially forgone revenues in a relatively low cap and relatively high catch ratio situation. If a cap was set lower than 12 mt or the actual observed ratio was higher, forgone revenue could be higher as well. Amendment 10 to the MSB FMP estimated that for longfin squid, dealers lost an amount equal to 73% of the revenue lost by vessels and all shoreside business combined lost an amount equal to 3 times the amount lost by vessels.

Under recent sampling intensities, C.V.s for annual river herring estimates have been improving but at the fine scale necessary to close “the longfin squid fishery” C.V.s related to a mortality cap are likely to be over 1.0 (see table A2 in Appendix 2). Given C.V.s over 0.5 translate into the value of zero being within the 95% confidence interval, it may be difficult to justify closing a fishery given the science tells us our estimates are likely very inaccurate in any given year.

The estimates’ uncertainty also makes it difficult for business planning purposes if highly uncertain estimates may be causing fishery closures.

While there are human community costs there also could be human community benefits. To the extent that these alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other non-target species, then choosing this action alternative in
comparison to the no-action alternative might result in additional benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. However, the actual rebuilding of RH/S runs to optimally productive levels would be expected to lead to substantial positive benefits. These fisheries have supported thriving (if seasonal) commercial and recreational fisheries in the past. Public interest in this amendment demonstrates that that the general public holds a certain value for the knowledge that these fisheries are being sustainably managed, and even if each individual's value is small the total public value may be quite large. If limiting RH/S catch through this alternative set led to rebuilding then the benefits of the action alternatives would be large. If limiting RH/S catch through this alternative set did not substantially lead to rebuilding (i.e. other factors are primarily to cause for RH/S declines - see sections 6.2.5 and 6.2.6) then the benefits of the action alternatives would be minor. Future research may provide information on what factors are primarily responsible to RH/S declines but currently that information is not available.

6e. Implement a mortality cap for shads for the longfin squid fishery whereby the longfin squid fishery would close once it is determined that it created a certain level of shad mortality (that level would be determined annually by Council in specification process unless RH/S were added as stocks in the fishery in which case SSC would be involved in ABC setting for RH/S).

One way to assign mortality caps for shad would be to base it on the range of estimated shad mortality conducted by the science center/FMAT to support Am14. Mid-Atlantic small mesh bottom trawl accounted for 11.5% of total shad mortality. While Mid-Atlantic small mesh bottom trawl encompasses a variety of fisheries besides longfin squid (including Atlantic herring), some of the New England small mesh bottom trawl mortality is probably related to longfin squid fishing so using the full Mid-Atlantic value is probably reasonable. The table below describes total ocean and 11.5% of total mortalities in the leftmost columns.

Using the separate ratio method described in Wigley et al., 2007 (modified by adding kept in the numerator in addition to discards) developed for the butterfish cap and applying it to observer trips and regular trips that landed at least 2,500 pounds longfin squid results in annual shad mortality ratios from almost 0.03% in 2009 to 0.21% in 2010 with a mean of 0.10%. The 2,500 pound filter was used because it has been the way directed longfin squid trips have been identified in the butterfish cap for the longfin squid fishery and because is encompasses almost all longfin squid landings. The exact definition of a longfin squid trip would be developed in the implementation process, as has been the case with the butterfish cap for the longfin squid fishery.

In the right hand columns are the landings at which point the longfin squid fishery would close depending on the above range of ratios and if the cap the Mid-Atlantic small mesh bottom trawl portion of total ocean fishing mortality. For example, if a cap of 5mt was used, the longfin squid fishery would close when it landed 2,587 mt with a high ratio, 5,433mt with the mean ratio, or 18,109 mt of fish with a low ratio. The differences in the two 7mt caps are due to rounding.
Without an assessment providing advice on overall acceptable fishing mortality, the Council would have to make a policy decision about how much catch to allow in this fishery and would evaluate a range of caps, probably based on recent catch estimates as done in the table below.

Table 71. Example Shad Caps for Longfin squid.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Estimated Ocean Fishing Mortality (mt)</th>
<th>Mid-Atlantic Small Mesh Bottom Trawl mortality (mt) (11.5% of total) = Mortality Cap Possibility</th>
<th>Longfin squid would close at these landings (mt) with high ratio, 0.21%</th>
<th>Longfin squid would close at these landings (mt) with mean ratio, 0.10%</th>
<th>Longfin squid would close at these landings (mt) with low ratio, 0.03%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>47</td>
<td>5</td>
<td>2,587</td>
<td>5,433</td>
<td>18,109</td>
</tr>
<tr>
<td>2007</td>
<td>60</td>
<td>7</td>
<td>3,278</td>
<td>6,883</td>
<td>22,943</td>
</tr>
<tr>
<td>2008</td>
<td>60</td>
<td>7</td>
<td>3,297</td>
<td>6,924</td>
<td>23,081</td>
</tr>
<tr>
<td>2009</td>
<td>70</td>
<td>8</td>
<td>3,857</td>
<td>8,099</td>
<td>26,998</td>
</tr>
<tr>
<td>2010</td>
<td>47</td>
<td>5</td>
<td>2,587</td>
<td>5,433</td>
<td>18,109</td>
</tr>
</tbody>
</table>

Source: Unpublished observer data and Appendix 2.

If these values were used with the above range of mortality caps, the amount of total fish (the ratio is based on all fish retained) that could be harvested by trips as defined above before the longfin squid fishery was shut down by the shad mortality cap is illustrated on the rightmost columns in the above table (these can be compared to recent landings detailed in Section 6.6). A high ratio means that more shad were caught and a low ratio means that less shad were caught. The examples in the above table come for observed data 2006-2010. The main point is that whether longfin squid would close because of a cap would depend on how much the Council set the cap at in a given year, what the realized catch of shad was, and what the longfin squid availability was. Since the realized ratio can vary substantially from year to year, it is difficult to predict impacts other than to acknowledge that in some years a closure could come very early and in some years a closure could not happen at all. If the ratio is very low, the fishery would be allowed to continue operating, as a closure would occur at a landings level much higher than recent quotas. If the ratio is very high, a closure could occur early in the season. Additional impact analysis would be carried out by the specifications that implemented these caps.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A potentially low positive impact would be expected compared to the no-action alternative. If the directed fishery is closed because of a mortality cap the managed species may also benefit because of reduced fishing mortality. However, given the uncertainty about MSB stock dynamics and the uncertainty about when a closure might occur it is not possible to quantify such impacts. In general, if the cap is set higher, or the ratio (catch rate of RH/S) is lower, the directed fishery will stay open longer, which will result in less positive impacts for the managed species. Conversely, if the cap is set lower, or the ratio is higher, the directed fishery will close sooner, which will result in more positive impacts for the managed species. If the cap does not result in a closure then there will be no impacts on managed resources compared to the no-action
alternative. Since taking the full quota of the directed species should not impact the sustainability of the managed resource, impacts to the managed resource should be low compared to the no action alternative. If the longfin squid fishery is closed early, there would likely be positive impacts to butterfish given the relatively high catch rates of butterfish in the longfin squid fishery.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially positive impact would be expected compared to the no-action alternative. If a low cap is chosen, for example 5mt, and a high ratio (catch rate of RH/S) is observed, for example 0.21%, then the fishery would be closed at 2,587 mt total landings (of which a portion is longfin squid), which would be very constraining in every year. If longfin squid closed earlier than it otherwise would there would likely be less catch of shads (and other non-target species) but it is not possible to quantify the effect (if any) on shad stocks of catching only 5mt of shad versus some other amount due to the paucity of assessment information. Given the uncertainty of cap amounts and/or encounter rates it is not possible to quantify the impacts but the lower the cap is set, or the higher the ratio is, the shorter the directed fishery will stay open and more potentially positive impacts will occur to non-target species, including RH/S, because non-target species mortality in the directed fishery may be reduced. If there was no closure then the impacts on non-target species including RH/S would be the same as described in the no-action alternative. It should be noted that the connection between catch in the longfin squid fishery (or other ocean fisheries) and RH/S populations is unknown.

However, targeting information collected by NEFOP observers suggests that only a small portion of small mesh bottom trawl catches of RH/S are actually from longfin squid-targeted tows with herring accounting for most followed by mackerel and silver hake. While these are not extrapolated catches, and target species is self-reported to observers prior to each tow, on a relative basis the information suggests that the longfin squid fishery may not actually be accounting for that much RH/S catch, which is consistent with the directed-trip based analysis conducted annually for the specifications’ environmental assessment (provided above in section 6.3).

3. Habitat Impacts Including EFH

A potentially positive impact would be expected compared to the no-action alternative. Since the longfin squid fishery primarily uses bottom otter trawl, if a mortality cap closed the longfin squid fishery early there should be less adverse habitat impacts, especially in the winter/spring offshore fishery that occurs in deeper water (the summer fishery mostly takes place in sandy areas that are subject to a high level of natural disturbance). If there was no closure then there would be no impacts compared to the no-action alternative.
4. **Protected Resources**

A potentially positive impact would be expected compared to the no-action alternative. If the directed fishery is closed earlier than would otherwise occur because of a mortality cap, protected species benefit due to the reduction in effort. In general, the higher the cap is set, or the lower the ratio (catch rate of RH/S) is, the longer the directed fishery will stay open and less positive impacts occur for protected resources because of continued potential interactions. The lower the cap is set, or the higher the ratio is, the shorter the directed fishery will stay open and more positive impacts for protected species will occur. If there was no closure then the impacts on protected resources would be the same as described in the no-action alternative.

5. **Human Communities**

A potentially high negative impact would be expected compared to the no-action alternative. If a low cap is chosen, for example 5mt, and a high ratio (catch rate of RH/S) is observed, for example 0.21%, then the fishery would be closed at 2,587 mt total catch, which would be very constraining in every year. If longfin squid closed earlier than it otherwise would there would be associated forgone revenues, with the amount depending on the cap amount, the ratio of shad observed caught (catch rate of shad), and the availability of longfin squid. If the cap is set high enough or the ratio is low enough there would be no losses because the cap would not result in a closure of the directed fishery, and would thus not constrain fishing activity. However, relative to the 2012 proposed landings quota of 22,445 mt, if the longfin squid fishery faced the relatively low cap and relatively high catch ratio described above, and was limited to 2,587mt of catch, 19,858mt of catch could potentially be forgone. At 2010 ex-vessel prices, 19,858mt of longfin squid would be worth $45.4 million. While the longfin squid fishery has not been catching these levels in recent years (see section 6.7.4), these would be an example of potentially forgone revenues in a relatively low cap and relatively high catch ratio situation. If a cap was set lower than 5 mt or the actual observed ratio was higher, forgone revenue could be higher as well. Amendment 10 to the MSB FMP estimated that for longfin squid, dealers lost an amount equal to 73% of the revenue lost by vessels and all shoreside business combined lost an amount equal to 3 times the amount lost by vessels.

Under recent sampling intensities, C.V.s for annual shad estimates have been improving but at the fine scale necessary to close “the longfin squid fishery” C.V.s related to a mortality cap are likely to be over 1.0 (see table A2 in Appendix 2). Given C.V.s over 0.5 translate into the value of zero being within the 95% confidence interval, it may be difficult to justify closing a fishery given the science tells us our estimates are likely very inaccurate in any given year. The low overall catch of shad and therefore low amount of a cap based on recent catch would likely greatly complicate mortality-cap based management for shad given the imprecision of catch data.

The estimates’ uncertainty also makes it difficult for business planning purposes if highly uncertain estimates may be causing fishery closures.

While there are human community costs there also could be human community benefits. To the extent that these alternatives lead to better management (i.e. sustainable fisheries producing
optimal yields) of RH/S or other non-target species, then choosing this action alternative in comparison to the no-action alternative might result in additional benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. However, the actual rebuilding of RH/S runs to optimally productive levels would be expected to lead to substantial positive benefits. These fisheries have supported thriving (if seasonal) commercial and recreational fisheries in the past. Public interest in this amendment demonstrates that the general public holds a certain value for the knowledge that these fisheries are being sustainably managed, and even if each individual's value is small the total public value may be quite large. If limiting RH/S catch through this alternative set led to rebuilding then the benefits of the action alternatives would be large. If limiting RH/S catch through this alternative set did not substantially lead to rebuilding (i.e. other factors are primarily to cause for RH/S declines - see sections 6.2.5 and 6.2.6) then the benefits of the action alternatives would be minor. Future research may provide information on what factors are primarily responsible to RH/S declines but currently that information is not available.

6f. Add mortality caps to list of measures that can be frameworked. (PREFERRED)

Allowing a cap to be considered via a framework should not have any impacts other than allowing more rapid management responses. Impacts would be analyzed at the time of framework consideration. No immediate impacts would be expected for any VEC. Any potential follow-up actions would be subsequently analyzed and considered separately.
In this amendment, the Council chose to add a cap for RH/S on the mackerel fishery in the 2014 MSB specifications. Additional analysis will be available for the impacts of the cap in the analysis that supports the particular cap level that is implemented via the specifications.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

All of the RH/S mortality cap action alternatives (except 6f which is administrative) could potentially lead to directed fishery closures that could benefit the managed species but impacts should be low since even achieving their full quota should be sustainable. Closures of the longfin squid fishery would be particularly beneficial to butterfish given the relatively high catch of butterfish in the longfin squid fishery.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

Depending on how high the RH/S mortality caps were set, there could be less non-target interactions if closures occur under any of the action alternatives.

3. Habitat Impacts Including EFH

Depending on how high the RH/S mortality caps were set, there could be less effort and so less habitat disturbances if closures occur under any of the action alternatives, especially longfin squid closures since that fishery predominantly uses bottom trawl gear.

4. Protected Resources

Depending on how high the RH/S mortality caps were set, there could be less effort and so less protected resource interactions if closures occur under any of the action alternatives.

5. Human Communities

Human community impacts are mixed depending on which interest group is considered. Commercial participants could incur low to high costs in the form of reduced revenues depending on how high any RH/S caps were set and depending on fishery performance. The interested public would benefit to the extent that lower catch helped rebuild RH/S stocks (which is highly uncertain).
7.7 Alternative Set 7 – Restrictions in areas of high RH/S catch

Statement of Problem/Need for Action:

There are currently no limits on catch of RH/S in the mackerel and/or longfin squid fisheries other than state landing requirements

Background:

The Council originally hoped to include some alternatives that would restrict fishing in relatively small areas that appeared to be “hotspots” for RH/S catch. The Amendment’s Fishery Management Action Team’s found that small-area management is unlikely to be successful (see Appendices) because of the wide and variable distribution of RH/S and of the mackerel and longfin squid fisheries. Thus small area management may just reshuffle effort with unpredictable impacts. The table below is designed to help illustrate how even if you reduce catch rates of one species, for example blueback herring, but reduce catch rates of the directed species even more, it can be possible to do more harm than good if the fleet increases effort to maintain the same amount of harvest. For example, if catch rates of blueback herring are lowered a little and mackerel catch rates and effort are neutral, then this is “good” in that less blueback herring would probably be caught. On the other hand if blueback herring catch rates are lowered a little but mackerel catch rates a lowered a lot and effort increases a lot to make up the difference, then this could be “bad” in that even though catch rates of blueback herring may have gone down, total catch may have gone up. Thus the catch rates of both the target and non-target species are important when considering area-based management. The main point is just that with the wide and varied distribution of RH/S, and the wide and varied distribution of the target species, it appears very difficult to predict whether impacts from small area-based measures may be neutral, positive, or negative for RH/S.

Table 72. Direct/Non-Target Impact Schematic

Effects on non-target catch of moving effort assuming effort changes to maintain constant mackerel catch if CPUE changes
"good" = lower overall non-target catches; "bad" = higher overall non-target catches

<table>
<thead>
<tr>
<th>Blueback</th>
<th>Mackerel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUE Changes</td>
<td>neutral</td>
</tr>
<tr>
<td>neutral</td>
<td>0</td>
</tr>
<tr>
<td>a little lower</td>
<td>good</td>
</tr>
<tr>
<td>a lot lower</td>
<td>good</td>
</tr>
</tbody>
</table>
Because the Council instructed the FMAT to generate area-based alternatives that would be likely to provide protection to RH/S, the FMAT generated several alternatives that are area based but the FMAT also acknowledged that such large-scale closures would effectively close the fisheries for many participants. Council staff attempted to perform additional smaller-scale examinations of the data (for example around Hudson canyon) but at such small scales there are too few observations to draw strong conclusions.

The FMAT analysis suggests that because of the spatial and temporal variability of observed (Northeast Fishery Observer Program or “NEFOP”) RH/S catch, the same kind of variability in mackerel and longfin squid effort and catch, and the same kind of variability in RH/S NEFSC trawl survey catches, that very large areas would be required to ensure that management was not just redistributing effort, possibly in a way that could increase RH/S catch. For this reason Council staff used the FMAT GIS analysis to construct areas for mackerel and longfin squid based on the mid-water and small-mesh bottom trawl fleet effort data and RH/S catch data.

NOTE ON COMBINATIONS: 7bMack and 7cMack are mutually exclusive – the Council could close the area to directed fishing (7bMack) or require observers (7cMack) but not both. Likewise 7bLong and 7cLong are mutually exclusive – the Council could close the area to directed fishing (7bLong) or require observers (7cLong) but not both. One of the mackerel alternatives (either 7bMack or 7cMack) could be combined with one of the longfin squid alternatives (either 7bLong or 7cLong) however. 7d could be added to any 7b or 7c alternative to make those provisions only applicable after a cap-based trigger was reached. The Council would have to specify in this case that the Alternative Set 6 cap trigger was only a trigger for Alternative Set 7 rather than a stand-alone cap measure. 7e could be chosen in addition to any other alternative in this Alternative Set.

Given the overlapping nature of Alternative Sets 7 and 8, it is not expected that alternatives would be chosen from both Alternative Sets 7 and 8 for one fishery. One could select an alternative for the longfin squid fishery from one set and for the mackerel fishery from another set, but not from both sets for one fishery.

The enforceability of area-based management alternatives could be facilitated by the selection of the vessel monitoring system (VMS) requirement in Alternative Set 1 (alternatives 1eMack or 1eLong).

The selection of alternatives that include observer coverage requirements (7cMack and 7cLong) would require the selection of observer program notification alternatives for limited access mackerel permits in Alternative Set 1(1d48 and 1d72).

When comparing alternatives relative to the mackerel fishery or the longfin squid fishery, the mackerel alternatives are likely to have a greater positive impact on RH/S because substantially more RH/S appear to be caught in the mackerel fishery, but it is not possible to quantify the differential in potential benefits.
7a. No-action regarding large closed areas (PREFERRED)

If this alternative is selected, then no measures from Alternative Set 7 would be implemented and the existing state management measures (as described in section 5.7) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below. While this section focuses on incremental impacts, cumulative impacts are discussed in Section 8.

1. **Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)**

A potentially low negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 7 would likely reduce effort and catch of the managed species (mackerel and longfin squid), such alternatives would lead to less mortality of those species. However, catching the full quota of the managed species is not expected to cause sustainability problems for the managed species so impacts are low. If the longfin squid fishery is reduced, there would likely be benefits to butterfish given the relatively high catch rates of butterfish in the longfin squid fishery.

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A potentially negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 7 would likely reduce effort for the managed species (mackerel and longfin squid), such alternatives would also likely lead to less mortality of non-target species including RH/S. However, the current impacts on RH/S of the mackerel and longfin squid fisheries are not known so impacts are not quantifiable.

3. **Habitat Impacts Including EFH**

A potentially negative impact would be expected compared to the action alternatives. Since alternatives in Alternative Set 7 would likely reduce effort for the managed species (mackerel and longfin squid), such alternatives could also likely lead to less habitat impacts, especially related to longfin squid fishing since it uses bottom otter trawl gear. Participants could redirect toward other species in the same or other areas since most participants have multiple permits, but it is not possible to predict such shifts and/or any associated habitat impacts.
4. **Protected Resources**

A potentially negative impact would be expected compared to the action alternatives since alternatives in Alternative Set 7 would likely reduce effort for the managed species (mackerel and longfin squid), such alternatives could also likely lead to less protected resource interactions (see Section 6 for details on such interactions). Participants could redirect toward other species in the same or other areas since most participants have multiple permits, but it is not possible to predict such shifts and/or any associated protected resource impacts.

5. **Human Communities**

The impacts of the no-action alternative in comparison to the other alternatives for human communities appear mixed with uncertain net impacts. On one hand the costs to fishery participants in terms of lost fishing opportunities due to time/area closures or having to carry and pay for observers to enter the restricted areas would be avoided, which is a positive impact.

On the other hand, to the extent that these alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S, then choosing the no-action alternative in comparison to the other alternatives might result in foregone benefits related to lost commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. However, the actual rebuilding of RH/S runs to optimally productive levels would be expected to lead to substantial positive benefits. These fisheries have supported thriving (if seasonal) commercial and recreational fisheries in the past. Public interest in this amendment demonstrates that that the general public holds a certain value for the knowledge that these fisheries are being sustainably managed, and even if each individual's value is small the total public value may be quite large. If limiting RH/S catch through this alternative set led to rebuilding then the benefits of the action alternatives would be large. If limiting RH/S catch through this alternative set did not substantially lead to rebuilding (i.e. other factors are primarily to cause for RH/S declines - see sections 6.2.5 and 6.2.6) then the benefits of the action alternatives would be minor. Future research may provide information on what factors are primarily responsible to RH/S declines but currently that information is not available.
7bMack. Closed Area - Prohibit retention of more than 20,000 pounds of mackerel in RH/S Mackerel Management Area (applies in Quarter 1 only – see map below) for vessels with federal mackerel permits.

Note: While the scope of this time-area closure would curtail mackerel fishing, some effort could occur/shift to areas outside the closure area and some effort could occur/shift to other time periods.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A potentially low positive impact would be expected for mackerel compared to the no-action alternative since effort and catch would likely be reduced. Since taking the full quota of the directed species should not impact the sustainability of the managed resource, impacts should be low.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A positive impact would be expected for non-target species including RH/S compared to the no-action alternative since effort and catch would likely be reduced. Given the RH/S Mackerel Management Area encompasses most Quarter 1 mid-water trawl effort as well as most Quarter 1 observer data observations of RH/S catch, which are estimated to account for 35% of total RH/S catch, it is likely that effectively closing this area to mackerel fishing would create some positive impacts for RH/S and other non-target species, but it is not possible to quantify the effect (if any) on RH/S stocks of catching one amount of RH/S versus some other amount due to the paucity of assessment information. In addition, effort redistribution (including shifts of effort to other fisheries in the same area) could lead to unexpected potentially negative impacts if they ultimately increase non-target species interactions. Due to the expected overall lower effort these would not be expected to change the overall positive impact.

From an information point of view, if vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

3. Habitat Impacts Including EFH

A neutral or negligible impact would be expected compared to the no-action alternative. Since the proposed RH/S area is very large and encompasses nearly the entire “footprint” of the winter-spring directed mackerel fishery, a trip limit of 20,000 lbs in Quarter 1 would essentially shut down the mackerel fishery because vessels would have to travel outside of the area to target mackerel at levels above 20,000 lb. So there would be a reduction in mackerel fishing, but since mid-water trawl gear, which accounts for most mackerel effort, and this gear type does not generally contact the bottom, there would be no benefits to benthic habitats. There is some directed bottom trawling for mackerel but not enough for there to be more than negligible impacts. Also, depending on the final regulations, closure of the mackerel fishery due to the mortality cap would likely result in a reduction of the mackerel possession limit to the incidental level (20,000 lb), rather than a full prohibition on mackerel possession. Accordingly, any habitat
benefits related to reduced effort during a closure may be offset by some smaller-scale bottom
trawlers who decide to pursue mackerel under the incidental trip limits (to take advantage of the
cut-off supply and possibly higher prices). Thus, overall effort that contacts the bottom may be
level, suggesting a neutral and/or negligible impact to habitat compared to the no action
alternative.

4. Protected Resources

A positive impact would be expected for protected resources compared to the no-action
alternative since effort would likely be reduced given the scope of the closed area. Reduced
effort could potentially result in a reduced number of protected species interactions in the
mackerel fishery.

From an information point of view, if vessels just avoid these areas and observer coverage is
steady, then more information would be collected outside the areas and less information would
be collected inside the area for probably no net change in the value of information gathered.

5. Human Communities

The impacts appear mixed with uncertain net impacts compared to the no-action alternative. On
one hand, as described in the table below, about 85% of mackerel revenues with an assigned area
(2/3 to ¾ of total landings) from 2006-2010 came from within the RH/S Mackerel Management
Area. While vessels would compensate as best they could so impacts are difficult to further
quantify, vessels that typically rely on mackerel would likely experience negative economic
impacts due to lost fishing revenue or costs to transit the area to a non-closed area.

<table>
<thead>
<tr>
<th></th>
<th>Outside Mackerel Value ($)</th>
<th>Inside Mackerel Value ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>3,149,111</td>
<td>17,323,851</td>
</tr>
<tr>
<td>2007</td>
<td>946,926</td>
<td>2,666,001</td>
</tr>
<tr>
<td>2008</td>
<td>553,705</td>
<td>3,200,344</td>
</tr>
<tr>
<td>2009</td>
<td>681,665</td>
<td>6,655,122</td>
</tr>
<tr>
<td>2010</td>
<td>471,663</td>
<td>2,920,919</td>
</tr>
<tr>
<td>Total</td>
<td>5,803,070</td>
<td>32,766,237</td>
</tr>
<tr>
<td>%</td>
<td>15%</td>
<td>85%</td>
</tr>
</tbody>
</table>

Source: Unpublished VTR Data

While there are human community costs there also could be human community benefits. To the
extent that these alternatives lead to better management (i.e. sustainable fisheries producing
optimal yields) of RH/S or other non-target species, then choosing this action alternative in
comparison to the no-action alternative might result in additional benefits related to commercial
revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other
non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. However, the actual rebuilding of RH/S runs to optimally productive levels would be expected to lead to substantial positive benefits. These fisheries have supported thriving (if seasonal) commercial and recreational fisheries in the past. Public interest in this amendment demonstrates that the general public holds a certain value for the knowledge that these fisheries are being sustainably managed, and even if each individual's value is small the total public value may be quite large. If limiting RH/S catch through this alternative set led to rebuilding then the benefits of the action alternatives would be large. If limiting RH/S catch through this alternative set did not substantially lead to rebuilding (i.e. other factors are primarily to cause for RH/S declines - see sections 6.2.5 and 6.2.6) then the benefits of the action alternatives would be minor. Future research may provide information on what factors are primarily responsible to RH/S declines but currently that information is not available.

7b. Long, Closed Area - Prohibit retention of more than 2,500 pounds longfin squid in RH/S Longfin Squid Management Area (applies year-round – see maps below) for vessels with federal longfin squid moratorium permits.

Note: While the scope of this time-area closure would curtail longfin squid fishing, some effort could occur/shift to areas outside the closure area.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A potentially low positive impact would be expected for longfin squid compared to the no-action alternative since effort and catch would likely be reduced. Since taking the full quota of the directed species should not impact the sustainability of the managed resource, impacts should be low. If the longfin squid fishery is reduced, there would likely be benefits to butterfish given the relatively high catch rates of butterfish in the longfin squid fishery.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A low positive impact would be expected for non-target species including RH/S compared to the no-action alternative since effort and catch would likely be reduced. Given the RH/S Longfin Squid Management Area encompasses most of the area where small mesh bottom trawl effort overlaps with RH/S catches, it is likely that effectively closing this area to longfin squid fishing would create some positive impacts for non-target species including RH/S, but it is not possible to quantify the effect (if any) on RH/S stocks of catching one amount of RH/S versus some other amount due to the paucity of assessment information.

From an information point of view, if vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.
However, targeting information collected by NEFOP observers suggests that only a small portion of small mesh bottom trawl catches of RH/S are actually from longfin squid-targeted tows with herring accounting for most followed by mackerel and silver hake. While these are not extrapolated catches, and target species is self-reported to observers prior to each tow, on a relative basis the information suggests that the longfin squid fishery may not actually be accounting for that much RH/S catch, which is consistent with the directed-trip based analysis conducted annually for the specifications’ environmental assessment (provided above in section 6.3). This suggests impacts to non-target species may be low.

In addition, effort redistribution (including shifts of effort to other fisheries in the same area) could lead to unexpected potentially negative impacts if they ultimately increase non-target species interactions. Due to the expected overall lower effort these would not be expected to change the overall positive impact.

3. **Habitat Impacts Including EFH**

A low positive impact would be expected compared to the no-action alternative. The proposed closure areas for longfin squid are large enough that some overall effort reduction would occur, reducing habitat impacts, especially within the closed area. While not expected to totally offset the positive impacts, this alternative might displace some effort to the southern edge of Georges Bank. Because the directed fishery is a bottom trawl fishery, and because the bottom habitats on the outer shelf are deeper and more vulnerable to bottom contact (less natural disturbance), this alternative could potentially have negative habitat impacts outside the RH/S areas related to increases in redistributed fishing effort.

4. **Protected Resources**

A positive impact would be expected for protected resources compared to the no-action alternative since effort would likely be reduced given the scope of the closed area. Reduced effort would be likely to result in less protected species interaction in the longfin squid fishery.

From an information point of view, if vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.
5. Human Communities

The impacts appear mixed with uncertain net impacts compared to the no-action alternative. On one hand, as described in the table below, about 71% of longfin squid kept catch (VTR data) from 2006-2010 came from within the RH/S longfin squid Management Area. While vessels would compensate as best they could so impacts are difficult to further quantify, vessels that typically rely on longfin squid would likely experience negative economic impacts due to lost fishing revenue or costs to transit the area to a non-closed area.

Table 74. Longfin squid kept VTR catch in and out of RH/S Area

<table>
<thead>
<tr>
<th></th>
<th>Outside Loligo Pounds</th>
<th>Inside Loligo Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>7,139,722</td>
<td>30,323,237</td>
</tr>
<tr>
<td>2007</td>
<td>16,516,551</td>
<td>12,991,085</td>
</tr>
<tr>
<td>2008</td>
<td>6,692,942</td>
<td>20,772,623</td>
</tr>
<tr>
<td>2009</td>
<td>4,352,451</td>
<td>17,991,543</td>
</tr>
<tr>
<td>2010</td>
<td>4,050,619</td>
<td>12,510,747</td>
</tr>
<tr>
<td>Total</td>
<td>38,752,285</td>
<td>94,589,235</td>
</tr>
<tr>
<td>%</td>
<td>29%</td>
<td>71%</td>
</tr>
</tbody>
</table>

Source: Unpublished VTR Data

While there are human community costs there also could be human community benefits. To the extent that these alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other non-target species, then choosing this action alternative in comparison to the no-action alternative might result in additional benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. However, the actual rebuilding of RH/S runs to optimally productive levels would be expected to lead to substantial positive benefits. These fisheries have supported thriving (if seasonal) commercial and recreational fisheries in the past. Public interest in this amendment demonstrates that that the general public holds a certain value for the knowledge that these fisheries are being sustainably managed, and even if each individual's value is small the total public value may be quite large. If limiting RH/S catch through this alternative set led to rebuilding then the benefits of the action alternatives would be large. If limiting RH/S catch through this alternative set did not substantially lead to rebuilding (i.e. other factors are primarily to cause for RH/S declines - see sections 6.2.5 and 6.2.6) then the benefits of the action alternatives would be minor. Future research may provide information on what factors are primarily responsible to RH/S declines but currently that information is not available.
7cMack. Require observers in RH/S Mackerel Management Area (applies in Quarter 1 only – see map below) for vessels with federal mackerel permits to retain more than 20,000 pounds of mackerel. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries). NEFSC would accredit observers and vessels would have to contract and pay observers.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A potentially low positive impact would be expected for mackerel compared to the no-action alternative since overall effort and catch would likely be reduced given the scope of the closed area and the high costs of observer coverage. Since taking the full quota of the directed species should not impact the sustainability of the managed resource, impacts should be low.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially positive impact would be expected compared to the no-action alternative. To the degree that better data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. To the degree that fishermen did not fish because of the cost of the requirement, there could be benefits to non-target species because of reduced fisheries interactions. In addition, effort redistribution (including shifts of effort to other fisheries in the same area) could lead to unexpected potentially negative impacts if they ultimately increase non-target species interactions. Due to the expected overall lower effort these would not be expected to change the overall positive impact.

From an information point of view, if vessels still fish in these areas then more information is gained related to the observer requirement which is a potentially positive impact. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

3. Habitat Impacts Including EFH

A neutral or negligible impact would be expected compared to the no-action alternative. There may be a reduction in mackerel fishing, but since mid-water trawl gear, which accounts for most mackerel effort, does not generally contact the bottom, there would be no benefits to benthic habitats. There is some directed bottom trawling for mackerel but not enough for there to be more than negligible impacts. These benefits may be offset by some bottom trawlers who decide to pursue mackerel under the incidental trip limits (to take advantage of the cut-off supply and possibly higher prices), but both shifts should be small and offsetting, suggesting a neutral and/or negligible impact.
4. **Protected Resources**

A positive impact would be expected for protected resources compared to the no-action alternative since effort would likely be reduced given the scope of the observer coverage area and the costs of observer coverage. Less effort should result in less protected species interactions.

From an information point of view, if vessels still fish in these areas then more information is gained related to the observer requirement which is a potentially positive impact. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

5. **Human Communities**

The impacts appear mixed with uncertain net impacts compared to the no-action alternative. On one hand there are costs of carrying observers relative to vessel revenues and existing costs. These are described in Section 7.5. Given the scope of the area involved, this alternative is roughly similar to requiring 100% observer coverage. If the cost of observers is too high vessels would likely shift effort to other fisheries if possible but some revenue loss is still likely if they would have preferred to mackerel fish.

While there are human community costs there also could be human community benefits. To the extent that these alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other non-target species, then choosing this action alternative in comparison to the no-action alternative might result in additional benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since this alternative is primarily related to monitoring, the direct impacts are probably small but the reader should review similar impacts for the alternatives that deal with management measures that may utilize better data.
7c Long. Require observers in RH/S longfin squid Management Area (applies year round) for vessels with federal longfin squid permits to possess more than 2,500 pounds of longfin squid. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries). NEFSC would accredit observers and vessels would have to contract and pay observers.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A potentially low positive impact would be expected for longfin squid compared to the no-action alternative since overall effort and catch would likely be reduced given the scope of the closed area and the high costs of observer coverage. Since taking the full quota of the directed species should not impact the sustainability of the managed resource, impacts should be low. If the longfin squid fishery is better monitored or reduced, there would likely be benefits to butterfish given the relatively high catch rates of butterfish in the longfin squid fishery.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A potentially positive impact would be expected compared to the no-action alternative. To the degree that better data is used to better minimize non-target interactions, there could be positive impacts to non-target species, including RH/S. To the degree that fishermen did not fish because of the cost of the requirement, there could be benefits to non-target species because of reduced fisheries interaction related to the lower effort. In addition, effort redistribution (including shifts of effort to other fisheries in the same area) could lead to unexpected potentially negative impacts if they ultimately increase non-target species interactions. Due to the expected overall lower effort these would not be expected to change the overall positive impact.

From an information point of view, if vessels still fish in these areas then more information is gained related to the observer requirement which is a potentially positive impact. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

However, targeting information collected by NEFOP observers suggests that only a small portion of small mesh bottom trawl catches of RH/S are actually from longfin squid-targeted tows with herring accounting for most followed by mackerel and silver hake. While these are not extrapolated catches, and target species is self-reported to observers prior to each tow, on a relative basis the information suggests that the longfin squid fishery may not actually be accounting for that much RH/S catch, which is consistent with the directed-trip based analysis conducted annually for the specifications’ environmental assessment (provided above in section 6.3).
3. **Habitat Impacts Including EFH**

A potentially low positive impact would be expected compared to the no-action alternative. To the degree that fishermen did not fish because of the requirement to carry costly observers, effort would be reduced thus reducing habitat impacts. The proposed observer coverage areas for longfin squid are large enough that some overall effort reduction would likely occur, reducing habitat impacts, especially within the observer coverage area. While not expected to totally offset the positive impacts, this alternative might displace some effort to the southern edge of Georges Bank. Because the directed fishery is a bottom trawl fishery, and because the bottom habitats on the outer shelf are deeper and more vulnerable to bottom contact (less natural disturbance), this alternative could potentially have negative habitat impacts outside the RH/S areas related to increases in redistributed fishing effort.

4. **Protected Resources**

A positive impact would be expected for protected resources compared to the no-action alternative since effort would likely be reduced given the scope of the observer coverage area and the costs of observer coverage. Less effort should result in less protected species interactions.

From an information point of view, if vessels still fish in these areas then more information is gained related to the observer requirement which is a potentially positive impact. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

5. **Human Communities**

The impacts appear mixed with uncertain net impacts compared to the no-action alternative. On one hand there are costs of carrying observers relative to vessel revenues and existing costs. These are described in Section 7.5. Given the scope of the area involved, this alternative is roughly similar to requiring 100% observer coverage. If the cost of observers is too high vessels would likely shift effort to other fisheries if possible but some revenue loss is still likely if they would have preferred to fish for longfin squid.

While there are human community costs there also could be human community benefits. To the extent that these alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other non-target species, then choosing this action alternative in comparison to the no-action alternative might result in additional benefits related to commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). Due to the uncertainty about how the productivity of either the managed species or RH/S is impacted by current catch levels these impacts are not quantifiable. Since this alternative is primarily related to monitoring, the direct impacts are
probably small but the reader should review similar impacts for the alternatives that deal with management measures that may utilize better data.

7d. Make above requirement(s) in effect only when a mortality cap "trigger" is reached. Operation of a “trigger” would be identical to the operation of a mortality cap (see Alternative Set 6 above) but the consequence of hitting the cap would be implementing 7b and/or 7c above if this alternative is selected in conjunction with 7b and/or 7c above. Trigger levels would be specified annually via specifications.

7d would only be selected if 7bMack, 7bLong, 7cMack, or 7cLong were selected. Because under 7d those measures would only be in place for the part of the year after the cap had been achieved, 7d would reduce the biological and human community impacts described in 7bMack, 7bLong, 7cMack, or 7cLong, depending on how quickly the trigger for the fishery is attained. Those impacts are not repeated here but are described in the analysis of RH/S mortality cap in Alternative Set 6 (see Section 7.6).

7e. Stipulate that any areas designated in Amendment 14 would be considered for updating every other year in specifications considering the most recent data available when specifications are developed.

This alternative would commit the Council to re-evaluate the designated areas every other year during the specifications process. The impacts of any potential revised areas will be evaluated in the NEPA documentation for the annual specifications that considered the changes

Biological Impacts

Impacts would be uncertain depending on the outcome of the analysis.

Human Community Impacts

Impacts would be uncertain depending on the outcome of the analysis.
Figure 61. RH/S Mackerel Management Area (would apply in Quarter 1 only) over Quarter 1 MWT effort and RH/S Catch
Spatial distribution of nominal effort (days fished from Vessel Trip Reports) for the small mesh (codend mesh ≤ 3.5 in.) bottom trawl fleet and the fleet’s incidental catch rates (kept+discarded weight/days fished from observed NEFOP trips) of alewife, blueback herring, hickory shad, and American shad combined, by ten-minute square, during Quarter 1 (left) and 2 (right) for 2005-2010.

Figure 62. RH/S Longfin squid Management Area over small mesh bottom effort and RH/S Catch (Quarters 1 and 2)
Figure 63. RH/S Longfin squid Management Area over small mesh bottom effort and RH/S Catch (Quarters 3 and 4)
Alternative Set 7 Summary - Restrictions in areas of high RH/S catch

1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

The action alternatives that implement large-scale area closures (7bMack and 7bLong) would have low benefits to managed species because it is likely the areas would lead to reduced total catch of the managed species because of the areas' large size and likelihood of discouraging effort. However, even achieving the full quota of the managed species should not cause sustainability concerns so impacts would be low. The alternatives that require industry-funded observer coverage in these areas (7cMack and 7cLong) would do the same (the cost of observers would discourage effort) but to a lesser degree since vessels could still fish in the area with an observer.

2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

The action alternatives that implement large-scale area closures (7bMack and 7bLong) would have benefits to non-target species because it is likely the areas would lead to reduced total non-target catch because of the areas' large size and likelihood of discouraging effort. The alternatives that require industry-funded observer coverage in these areas (7cMack and 7cLong) would do the same (the cost of observers would discourage effort) but to a lesser degree since vessels could still fish in the area with an observer. RH/S impacts would be higher (more positive) with the mackerel measures since the mackerel fishery appears to catch more RH/S than the longfin squid fishery.

3. **Habitat Impacts Including EFH**

To the degree effort was reduced, habitat impacts would also be reduced, with longfin squid effort reductions being more important since they predominantly use bottom otter trawls. The closures would probably reduce effort more than the observer coverage requirements as discussed above.

4. **Protected Resources**

To the degree effort was reduced, protected resource impacts would also be reduced. The closures would probably reduce effort more than the observer coverage requirements as discussed above.

5. **Human Communities**

Human community impacts are mixed depending on which interest group is considered. Commercial participants could incur high costs for all alternatives related to forgone revenues due to large area closures and/or high observer costs. The interested public would benefit to the extent that lower catch helped rebuild RH/S stocks (which is highly uncertain).
Comparison of Alternative Sets 7 and 8

As stated above, given the overlapping nature of Alternative Sets 7 and 8, it is not expected that alternatives would be chosen from both Alternative Sets 7 and 8 for one fishery. One could select an alternative for the longfin squid fishery from one set and for the mackerel fishery from another set, but not from both sets for one fishery. There are some hotspot areas north of Cape Cod that are not covered by Alternative Set 7’s larger areas but there is relatively low mackerel and/or longfin squid activity in those areas at the relevant times of the year. Because of Alternative Set 8’s small areas (hotspots) the difference in terms of impacts are not expected to be proportionally less for Set 8 compared to Set 7. Rather, Set 8 would be expected to have negligible impacts across resource types due to fishery participants’ abilities to redistribute effort, which could not occur to the same degree with Set 7 given how large the areas are in Set 7.

7.8 Alternative Set 8 – Hotspot Restrictions

The New England Fishery Management Council developed a variety of “Hotspot” alternatives in Amendment 5 to the Atlantic Herring Plan. All of the areas contemplated are relatively small and consider different restrictions within the hotspots. Since Atlantic herring and mackerel are often targeted by the same vessels and are sometimes targeted together at the same time, it makes sense to consider these alternatives even though they were based on observer data from “herring trips” as defined below.

The smallest areas are termed “River Herring Protection Areas.” These Protection Areas were identified bimonthly as the quarter degree squares with at least one observed tow of river herring catch greater than 1,233 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring during the respective 2-month period. The protection areas include just the portion of the monitoring/avoidance areas (described below) that have the highest river herring catches on Atlantic herring trips as defined above. Since the raw observer data were pooled across years, the threshold was only one tow, and the results are only from Herring Trips, they do not reflect how much total river herring was caught in the Protection Area versus other areas in a given year.

Slightly larger areas are termed “River Herring Monitoring/Avoidance Areas.” These Monitoring/Avoidance Areas were identified bimonthly as the quarter degree squares with at least one observed tow of river herring catch greater than 40 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring during the respective 2-month period. They include all of the area identified in the protection areas as well as areas where a more modest amount of river herring was caught. Since the raw observer data were pooled across years, the threshold was only one tow, and the results are only from Herring Trips, they do not reflect how much total river herring was caught in the Monitoring/Avoidance Areas versus other areas in a given year.

These protection and monitoring/avoidance areas are mapped below by their respective bi-monthly periods. Since seeing them on the same page clarifies the differences among the areas,
they are illustrated together below (where applicable). Management measures that could apply to these areas follow the maps.

NOTE ON COMBINATIONS: All of the action alternatives in the set could be adopted individually or together. 8f, which would make any of the requirements selected in this Alternative Set only applicable when the same measures were in effect for the Atlantic Herring fishery, would only be chosen if at least one alternative among 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong was also chosen.

Given the overlapping nature of Alternative Sets 7 and 8, it is not expected that alternatives would be chosen from both Alternative Sets 7 and 8 for one fishery. One could select an alternative for the longfin squid fishery from one set and for the mackerel fishery from another set, but not from both sets for one fishery.

The enforceability of area-based management alternatives could be facilitated by the selection of the vessel monitoring system (VMS) requirement in Alternative Set 1 (alternatives 1eMack or 1eLong).

The selection of alternatives that include observer coverage requirements (8cMack and 8cLong) would require the selection of observer program notification alternatives for limited access mackerel permits in Alternative Set 1(1d48 and 1d72).

If an overall observer coverage requirement in Alternative Set 5 was selected but did not result in a trip covered by an alternative in this Alternative Set having an observer, this Alternative Set would effectively require additional coverage.

When comparing alternatives relative to the mackerel fishery or the longfin squid fishery, the mackerel alternatives are likely to have a greater positive impact on RH/S because substantially more RH/S appear to be caught in the mackerel fishery, but it is not possible to quantify the differential in potential benefits.
Figure 64 January – February Herring Area

Protection Area (highest catch records from Monitoring/Avoidance Area)
Figure 65. March – April Herring Area

Protection Area (highest catch records from Monitoring/Avoidance Area)
Figure 66. May – June Herring Area

Protection Area

None proposed – there were no qualifying observer records (quarter degree squares with at least one observed tow of river herring catch greater than 1,233 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring).

THIS SECTION INTENTIONALLY LEFT BLANK

Monitoring/Avoidance Area
Figure 67. July – August Herring Area

Protection Area

None proposed – there were no qualifying observer records (quarter degree squares with at least one observed tow of river herring catch greater than 1,233 pounds, using 2005-2009 Northeast Fisheries Observer Program data from trips with greater than 2,000 pounds of kept Atlantic herring).

THIS SECTION INTENTIONALLY LEFT BLANK

Monitoring/Avoidance Area
Figure 68. September – October Herring Area

Protection Area (highest catch records from Monitoring/Avoidance Area)

Monitoring/Avoidance Area
Figure 69. November – December Herring Area Protection Area (highest catch records from Monitoring/Avoidance Area)

[Map 1]

Monitoring/Avoidance Area

[Map 2]
Management Measures

8a. No-action

If this alternative is selected, then no measures from Alternative Set 8 would be implemented and the existing state management measures (as described in section 5.9) would remain in place. Thus there would be no incremental impacts compared to the status quo, but there are relative impacts compared to the action alternatives, as described below. While this section focuses on incremental impacts, cumulative impacts are discussed in Section 8.

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A neutral or negligible impact would be expected compared to the action alternatives. Vessels will continue to target the managed resource across all current fishing areas. While the action alternatives may cause vessels to redirect fishing effort to other locations or managed fisheries, the proposed areas are relatively small for each bimonthly area so it is not expected that catches of the managed resources would change substantially with the proposed areas in place due to the highly migratory nature of the managed species. Because the proposed areas are not likely to impact the managed resource, the impacts of maintaining the status quo will also be neutral or negligible. For options that require observer coverage in hotspots, if vessels still fish in those areas, more information would be gained so not obtaining that information would be a forgone benefit. If overall observer coverage levels are steady, closing areas results in more information outside of the areas and less information inside the areas, so the no-action results in more information inside the areas and less information outside the areas.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A neutral or negligible impact would be expected compared to the action alternatives. Vessels will continue to target the managed resource across all current fishing areas. While the action alternatives may cause vessels to redirect fishing effort to other locations or managed fisheries, the proposed areas are relatively small and the distributions of most of the non-target species that interact with the managed resources are wide and variable. Because of this, small scope seasonal closures are not expected to reduce the rate of non-targets species interactions in the proposed areas beyond the level of non-target species interactions across current fishing areas. Because the proposed areas are not likely to impact the frequency of non-target resource interactions, the impacts of maintaining the status quo will also be neutral or negligible. If the areas happened to have higher RH/S catch rates then the no action would not redirect effort away from those areas and would be a negative impact for RH/S. If the areas happened to have lower RH/S catch rates then the no action would not redirect effort away from those areas and there would be a positive impact for RH/S, but the year to year variability in RH/S movement means that there may be negligible impacts over time.
For options that require observer coverage in hotspots, if vessels still fish in those areas, more information would be gained so not obtaining that information would be a forgone benefit. If overall observer coverage levels are steady, closing areas results in more information outside of the areas and less information inside the areas, so the no-action results in more information inside the areas and less information outside the areas.

3. Habitat Impacts Including EFH

A neutral or negligible impact overall impact would be expected compared to the action alternatives. With mackerel most effort is with mid-water gear so moving effort from one location to another should not impact habitat. For longfin squid, the no-action alternative would result in no change in fishing effort across areas. The action alternatives would decrease effort inside the hotspots (a positive for habitat there) but increase effort outside the hotspots (a negative for habitat there). So the no-action alternative would result in positive impacts for habitat outside the hotspots (by not redirecting effort there) and would result in negative impacts for habitat inside the hotspots (by not redirecting effort away from there). Overall however, there is no information to suggest that there would be a net change in effort and habitat impacts, just a redistribution. And since the areas are relatively small, the redistribution of effort should be relatively small, with negligible impacts between the no action and action alternatives.

4. Protected Resources

A neutral or negligible impact would be expected compared to the action alternatives. Vessels may fish elsewhere with the action alternatives but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that the new areas would be substantially different than the old areas in terms of protected resources or protected resource interactions.

If additional information on protected resources interactions could be gained through options that increase observer coverage and sampling (CA I provisions) on trips to RH/S areas, then selecting the no action results in less available information. If overall observer coverage levels are steady, closing areas results in more information outside of the areas and less information inside the areas, so the no-action results in more information inside the areas and less information outside the areas.

Since overall effort is not expected to change given the small size of the areas, closing areas would result in a redistribution of effort, so not closing the areas (no action) means there would be more interactions inside the areas and less interactions outside the areas but probably negligible overall impacts.

5. Human Communities

There are low negative socio-economic impacts for the action alternatives that would be avoided by choosing the no-action alternative compared to the status quo. These avoided impacts include costs of observers (8c), additional operational costs to leave an area after a slippage event (8d),
and additional operational costs if a vessel decided to travel to more distant areas rather than fish in one of the proposed hotspots (8c, 8d, 8e).

8b. Make implementing area-based "hotspot closures" to reduce catches (similar to those considered in NEFMC’s Amendment 5 to the Atlantic Herring Plan) frameworkable. (PREFERRED)

The Council would make the hotspot requirements considered below frameworkable under a subsequent action. Biological and Socioeconomic considerations would be reevaluated when any framework was developed and would depend on the exact measures considered. Impacts would be analyzed at the time of framework consideration. No immediate impacts would be expected for any VEC. Any potential follow-up actions would be subsequently analyzed and considered separately.

8c. For Atlantic mackerel permitted vessels, more than an incidental level of fish (20,000 pounds mackerel) may not be retained/transferred/ possessed if any fishing occurs in a River Herring Monitoring/Avoidance Area without a NMFS-approved observer at any point during the trip. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries).

1. Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere than the Monitoring/Avoidance Area with the action alternative but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that catches of the managed resources would be substantially impacted overall, especially given the wide distribution and migratory nature of the managed species, leading to high inter-annual variability in availability. There might be lower catches inside the area if this alternative was implemented, but higher catches outside due to effort displacement for a negligible net change because the areas are relatively small, affording vessels the opportunity to shift fishing effort and maintain level catches of the managed species.

From an information point of view, if vessels still fish in these areas then more information is gained related to the observer requirement which is a potentially positive impact. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.
2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere with the action alternatives but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that total effort would change nor would it be expected that the new areas would be substantially different than the old areas in terms of non-target impacts (including RH/S) given the wide distribution and high inter-annual variability of most non-target species' availability, including RH/S (see appendices 1 and 2). If effort is displaced from a small area, there might be lower catches inside the area but higher catches outside for a zero net change, especially since the areas are relatively small.

From an information point of view, if vessels still fish in these areas then more information is gained related to the observer requirement which is a potentially positive impact. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

3. Habitat Impacts Including EFH

A neutral or negligible impact overall impact would be expected compared to the no-action alternatives. With mackerel most effort is with mid-water gear so moving effort from one location to another should not impact habitat. Even for the bottom-trawl effort for mackerel, the action alternative would probably result in no change in net fishing effort across areas. The action alternatives would decrease effort inside the hotspots (a positive for habitat there) but increase effort outside the hotspots (a negative for habitat there). Overall however, there is no information to suggest that there would be a net change in effort and habitat impacts, just a redistribution. And since the areas are relatively small, the redistribution of effort should be relatively small, with negligible impacts between the no action and action alternatives.

4. Protected Resources

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere with the action alternatives but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that total effort would change nor would it be expected that the new areas would be substantially different than the old areas in terms of protected resource impacts given the wide distribution and high inter-annual variability of most protected resources. If effort is displaced from a small area, there might be lower interactions inside the area but higher interactions outside for a zero net change, especially since the areas are relatively small.

From an information point of view, if vessels still fish in these areas then more information is gained related to the observer requirement which is a potentially positive impact. If vessels just avoid these areas and observer coverage is steady, then more information would be collected
outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

5. **Human Communities**

A low negative impact would be expected compared to the no-action alternative. Participants would either have to pay to take an observer aboard ($800/day), raising mackerel trip costs by 23%–49% (see section 7.5 for analysis of observer cost compared to average mackerel revenues), or avoid fishing in the proposed areas. Conservation benefits are unlikely to be large based on the biological impact sections above. Given the small size of the areas, vessels are more likely to avoid the areas altogether rather than pay for costly observer coverage. Thus, because vessels are likely to decide not to fish in these areas, they have the potential to not incur costs for observer coverage, so impacts would likely be low. However, near-shore fishermen near the closed areas may be disproportionately impacted by closures around their home port, having to incur costs by traveling away from these areas.

8cLong. For longfin squid permitted vessels, more than an incidental level of fish (2,500 pounds longfin squid) may not be retained/transferred/possessed if any fishing occurs in a River Herring Monitoring/Avoidance Area without a NMFS-approved observer at any point during the trip. Vessels would have to pay for observers to meet any observer coverage goals adopted by the Council that are greater than existing sea day allocations assigned through the sea day allocation process (already implemented in other fisheries).

1. **Managed Resources Impacts (mackerel, *Illex*, butterfish, longfin squid)**

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere than the Monitoring/Avoidance Area with the action alternative but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that catches of the managed resources would be substantially impacted overall, especially given the wide distribution and migratory nature of the managed species, leading to high inter-annual variability in availability. There might be lower catches inside the area if this alternative was implemented, but higher catches outside due to effort displacement for a negligible net change because the areas are relatively small, affording vessels the opportunity to shift fishing effort and maintain level catches of the managed species.

From an information point of view, if vessels still fish in these areas then more information is gained related to the observer requirement which is a potentially positive impact. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.
2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere with the action alternatives but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that total effort would change nor would it be expected that the new areas would be substantially different than the old areas in terms of non-target impacts (including RH/S) given the wide distribution and high inter-annual variability of most non-target species' availability, including RH/S (see appendices 1 and 2). If effort is displaced from a small area, there might be lower catches inside the area but higher catches outside for a zero net change, especially since the areas are relatively small.

From an information point of view, if vessels still fish in these areas then more information is gained related to the observer requirement which is a potentially positive impact. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

Also, targeting information collected by NEFOP observers suggests that only a small portion of small mesh bottom trawl catches of RH/S are actually from longfin squid-targeted tows with herring accounting for most followed by mackerel and silver hake. While these are not extrapolated catches, and target species is self-reported to observers prior to each tow, on a relative basis the information suggests that the longfin squid fishery may not actually be accounting for that much RH/S catch, which is consistent with the directed-trip based analysis conducted annually for the specifications’ environmental assessment (provided above in section 6.3).

3. Habitat Impacts Including EFH

A neutral or negligible impact overall impact would be expected compared to the no-action alternatives. Even for the bottom-trawl effort, the action alternative would probably result in no change in net fishing effort across areas. The action alternatives would decrease effort inside the hotspots (a positive for habitat there) but increase effort outside the hotspots (a negative for habitat there). Overall however, there is no information to suggest that there would be a net change in effort and habitat impacts, just a redistribution. And since the areas are relatively small, the redistribution of effort should be relatively small, with negligible impacts between the no action and action alternatives.

4. Protected Resources

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere with the action alternatives but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to this alternative, it would
not be expected that total effort would change nor would it be expected that the new areas would be substantially different than the old areas in terms of protected resource impacts given the wide distribution and high inter-annual variability of most protected resources. If effort is displaced from a small area, there might be lower interactions inside the area but higher interactions outside for a zero net change, especially since the areas are relatively small.

5. Human Communities

A low negative impact would be expected compared to the no-action alternative. Participants would either have to pay to take an observer aboard ($800/day), raising longfin squid trip costs by 85%-189% (see section 7.5 for analysis of observer cost compared to average longfin squid trip revenues), or avoid fishing in the proposed areas. Conservation benefits are unlikely to be large based on the biological impact sections above. Given the small size of the areas, vessels are more likely to avoid the areas altogether rather than pay for costly observer coverage. Thus, because vessels are likely to decide not to fish in these areas, they have the potential to not incur costs for observer coverage, so impacts would likely be low. However, near-shore fishermen near the closed areas may be disproportionately impacted by closures around their home port, having to incur costs by traveling away from these areas.

8dMack. If a mackerel-permitted vessel is fishing in any River Herring Monitoring/Avoidance Areas identified in this alternative with an observer onboard, vessels would be required to pump/haul aboard all fish from the net for inspection and sampling by the observer. Vessels that do not pump fish would be required to bring all fish aboard the vessel for inspection and sampling by the observer. Unless specific conditions are met (see section 5.8), vessels would be prohibited from releasing fish from the net, transferring fish to another vessel that is not carrying a NMFS-approved observer, or otherwise discarding fish at sea, unless the fish have first been brought aboard the vessel and made available for sampling and inspection by the NMFS-approved observer.

As described in 5.8, if vessels do slip hauls in a monitoring/avoidance area they would be required to leave the monitoring/avoidance area for the duration of their trip.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A requirement to bring all fish on board for inspection when observers are onboard in these areas would not be expected to impact the managed resources compared to the no-action alternative since total catch of the managed resources is not likely to be substantially impacted. Even if fishing activity is displaced from these areas, since the managed species are widely distributed and the areas are relatively small, substantial changes in overall catch would not be expected.

From an information point of view, most of the managed species are already brought on board for sampling/inspection so related impacts would be negligible if vessels still fish in these areas. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered. Also, most fish are already brought on board for inspection.
2. Non-target Species Impacts (Including RH/S and species managed in other plans)

If vessels continue to fish in these areas, a requirement to bring all fish on board for inspection when observers are onboard in these areas would not be expected to impact non-target species (including RH/S) compared to the no-action alternative since the fishing activity would continue. Vessels may fish elsewhere with the action alternatives but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that total effort would change nor would it be expected that the new areas would be substantially different than the old areas in terms of non-target impacts (including RH/S) given the wide distribution and high inter-annual variability of most non-target species' availability, including RH/S (see appendices 1 and 2). If effort is displaced from a small area, there might be lower catches inside the area but higher catches outside for a zero net change, especially since the areas are relatively small.

From an information point of view, if vessels still fish in these areas then better data would be collected because all caught fish would be inspected. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

3. Habitat Impacts Including EFH

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere rather than be subject to these requirements in these areas but since the majority of mackerel landings are made with mid-water gear, which generally does not contact the bottom, any redirection or displacement of mackerel effort due to this alternative would not be expected to have any impacts on habitat. There is some directed bottom trawling for mackerel but not enough for there to be more than negligible impacts.

4. Protected Resources

If vessels continue to fish in these areas, a requirement to bring all fish on board for inspection when observers are onboard in these areas would not be expected to impact protected resources compared to the no-action alternative since the fishing activity would continue. If vessels just fish elsewhere, there would be lower interactions inside the areas but higher interactions outside the areas. Since the areas are relatively small it would not be expected that overall effort would change, and while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that the new areas would be substantially different than the old areas in terms of protected resources or protected resource interactions, especially since the areas are relatively small.

From an information point of view, if vessels still fish in these areas then better data would be collected because all caught fish would be inspected for protected resources. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside
the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

5. Human Communities

A requirement to bring all fish on board for inspection when observers are onboard in these areas would not be expected to substantially impact human communities compared to the no-action alternative since most fish are brought on board already and because the areas are relatively small relative to the wide distribution of fishing activity for the managed resources. Some loss of revenue and/or additional costs may accrue if a vessel has to leave an area after a slippage event but given the relatively small areas involved it is likely that fishermen will be able to react to keep any economic losses relatively low.

8d. If a longfin squid-permitted vessel is fishing in a River Herring Monitoring/Avoidance Areas identified in this alternative with an observer onboard, vessels would be required to pump/haul aboard all fish from the net for inspection and sampling by the observer. Vessels that do not pump fish would be required to bring all fish aboard the vessel for inspection and sampling by the observer. Unless specific conditions are met (see section 5.8), vessels would be prohibited from releasing fish from the net, transferring fish to another vessel that is not carrying a NMFS-approved observer, or otherwise discarding fish at sea, unless the fish have first been brought aboard the vessel and made available for sampling and inspection by the NMFS-approved observer.

As described in 5.8, if vessels do slip hauls in a monitoring/avoidance area they would be required to leave the monitoring/avoidance area for the duration of their trip.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A requirement to bring all fish on board for inspection when observers are onboard in these areas would not be expected to impact the managed resources compared to the no-action alternative since total catch of the managed resources is not likely to be substantially impacted. Even if fishing activity is displaced from these areas, since the managed species are widely distributed and the areas are relatively small, changes in overall catch would not be expected.

From an information point of view, most of the managed species are already brought on board for sampling/inspection so related impacts would be negligible if vessels still fish in these areas. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.
2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

If vessels continue to fish in these areas, a requirement to bring all fish on board for inspection when observers are onboard in these areas would not be expected to impact non-target species (including RH/S) compared to the no-action alternative since the fishing activity would continue. Vessels may fish elsewhere with the action alternatives but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that total effort would change nor would it be expected that the new areas would be substantially different than the old areas in terms of non-target impacts (including RH/S) given the wide distribution and high inter-annual variability of most non-target species' availability, including RH/S (see appendices 1 and 2). If effort is displaced from a small area, there might be lower catches inside the area but higher catches outside for a zero net change, especially since the areas are relatively small.

From an information point of view, if vessels still fish in these areas then better data would be collected because all caught fish would be inspected. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

Also, targeting information collected by NEFOP observers suggests that only a small portion of small mesh bottom trawl catches of RH/S are actually from longfin squid-targeted tows with herring accounting for most followed by mackerel and silver hake. While these are not extrapolated catches, and target species is self-reported to observers prior to each tow, on a relative basis the information suggests that the longfin squid fishery may not actually be accounting for that much RH/S catch, which is consistent with the directed-trip based analysis conducted annually for the specifications’ environmental assessment (provided above in section 6.3).

3. **Habitat Impacts Including EFH**

A neutral or negligible impact overall impact would be expected compared to the no-action alternatives. Even for the bottom-trawl effort, the action alternative would probably result in no change in net fishing effort across areas. The action alternatives might decrease effort inside the hotspots (a positive for habitat there) but increase effort outside the hotspots (a negative for habitat there). Overall however, there is no information to suggest that there would be a net change in effort and habitat impacts, just a redistribution. And since the areas are relatively small, the redistribution of effort should be relatively small, with negligible impacts between the no action and action alternatives.

4. **Protected Resources**

If vessels continue to fish in these areas, a requirement to bring all fish on board for inspection when observers are onboard in these areas would not be expected to impact protected resources compared to the no-action alternative since the fishing activity would continue. If vessels just...
fish elsewhere, there would be lower interactions inside the areas but higher interactions outside the areas. Since the areas are relatively small it would not be expected that overall effort would change, and while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that the new areas would be substantially different than the old areas in terms of protected resources or protected resource interactions, especially since the areas are relatively small.

From an information point of view, if vessels still fish in these areas then better data would be collected because all caught fish would be inspected for protected resources. If vessels just avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

5. Human Communities

A requirement to bring all fish on board for inspection when observers are onboard in these areas would not be expected to substantially impact human communities compared to the no-action alternative since most fish are brought on board already and because the areas are relatively small relative to the wide distribution of fishing activity for the managed resources. Some loss of revenue and/or additional costs may accrue if a vessel has to leave an area after a slippage event but given the relatively small areas involved it is likely that fishermen will be able to react to keep any economic losses relatively low.

8eMack. Vessels possessing a federal mackerel permit would not be able to retain, possess or transfer more than an incidental level of fish (20,000 pounds mackerel) while in a River Herring Protection Area unless no mesh smaller than 5.5 inches is onboard the vessel.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A neutral or negligible impact would be expected compared to the no-action alternative. While there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that catches of the managed resources would be substantially impacted overall, especially given the wide distribution and migratory nature of the managed species, leading to high inter-annual variability in availability. There might be lower catches inside the area if this alternative was implemented, but higher catches outside due to effort displacement for a negligible net change because the areas are relatively small, affording vessels the opportunity to shift fishing effort and maintain level catches of the managed species.

From an information point of view, if overall observer coverage is level, more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered, especially since the areas are relatively small.
2. **Non-target Species Impacts (Including RH/S and species managed in other plans)**

A neutral or negligible impact would be expected compared to the no-action alternative. While there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that total effort would change nor would it be expected that the new areas would be substantially different than the old areas in terms of non-target impacts (including RH/S) given the wide distribution and high inter-annual variability of most non-target species’ availability, including RH/S (see appendices 1 and 2). If effort is displaced from a small area, there might be lower catches inside the area but higher catches outside for a zero net change, especially since the areas are relatively small.

From an information point of view, assuming vessels avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

3. **Habitat Impacts Including EFH**

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere rather than in these areas but since the majority of mackerel landings are made with mid-water gear, which generally does not contact the bottom, any redirection or displacement of mackerel effort due to this alternative would not be expected to have any impacts on habitat. There is some directed bottom trawling for mackerel but not enough for there to be more than negligible impacts.

4. **Protected Resources**

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that total effort would change or that the new areas would be substantially different than the old areas in terms of protected resources or rates of protected resource interactions. Thus while there may be fewer interactions inside the areas, there may be more interactions outside the areas, probably with negligible net impacts since the areas are relatively small.

From an information point of view, assuming vessels avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

5. **Human Communities**

A low negative impact would be expected compared to the no-action alternative. If the protection areas overlap with productive fishing areas in a given year, revenues may be decreased or fishermen may incur higher costs traveling to other fishing areas. Given the complexity of fishermen’s responses to regulations and given the protection areas are relatively small, the effects may not be substantial for most fishermen in most years compared to the no-
action alternative. However, near-shore fishermen near the closed areas may be disproportionately impacted by closures around their home port. Given where and when the mackerel and longfin squid fisheries are conducted, mackerel participants are more likely to be impacted than longfin squid participants, who tend to fish offshore in the winter months.

8eLong. Vessels possessing a federal moratorium longfin squid permit would not be able to retain, possess or transfer more than an incidental level of fish (2,500 pounds longfin squid) while in a River Herring Protection Area unless no mesh smaller than 5.5 inches is onboard the vessel.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

A neutral or negligible impact would be expected compared to the no-action alternative. While there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that catches of the managed resources would be substantially impacted overall, especially given the wide distribution and migratory nature of the managed species, leading to high inter-annual variability in availability. There might be lower catches inside the area if this alternative was implemented, but higher catches outside due to effort displacement for a negligible net change because the areas are relatively small, affording vessels the opportunity to shift fishing effort and maintain level catches of the managed species.

From an information point of view, if overall observer coverage is level, more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered, especially since the areas are relatively small.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

A neutral or negligible impact would be expected compared to the no-action alternative. While there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that total effort would change nor would it be expected that the new areas would be substantially different than the old areas in terms of non-target impacts (including RH/S) given the wide distribution and high inter-annual variability of most non-target species' availability, including RH/S (see appendices 1 and 2). If effort is displaced from a small area, there might be lower catches inside the area but higher catches outside for a zero net change, especially since the areas are relatively small.

From an information point of view, assuming vessels avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

Also, targeting information collected by NEFOP observers suggests that only a small portion of small mesh bottom trawl catches of RH/S are actually from longfin squid-targeted tows with herring accounting for most followed by mackerel and silver hake. While these are not
extrapolated catches, and target species is self-reported to observers prior to each tow, on a relative basis the information suggests that the longfin squid fishery may not actually be accounting for that much RH/S catch, which is consistent with the directed-trip based analysis conducted annually for the specifications’ environmental assessment (provided above in section 6.3).

3. **Habitat Impacts Including EFH**

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere rather than in these areas but since the areas are relatively small, while there may be some redirection or displacement of longfin squid fishing effort due to this alternative, it would not be expected that the new areas would be substantially different than the old areas in terms of habitat and/or habitat impacts.

4. **Protected Resources**

A neutral or negligible impact would be expected compared to the no-action alternative. Vessels may fish elsewhere but since the areas are relatively small, while there may be some redirection or displacement of fishing effort due to this alternative, it would not be expected that total effort would change or that the new areas would be substantially different than the old areas in terms of protected resources or rates of protected resource interactions. Thus while there may be fewer interactions inside the areas, there may be more interactions outside the areas, probably with negligible net impacts since the areas are relatively small.

From an information point of view, assuming vessels avoid these areas and observer coverage is steady, then more information would be collected outside the areas and less information would be collected inside the area for probably no net change in the value of information gathered.

5. **Human Communities**

A low negative impact would be expected compared to the no-action alternative. If the protection areas overlap with productive fishing areas in a given year, revenues may be decreased or fishermen may incur higher costs traveling to other fishing areas. Given the complexity of fishermen’s responses to regulations and given the protection areas are relatively small, the effects may not be substantial for most fishermen in most years compared to the no-action alternative. However, near-shore fishermen near the closed areas may be disproportionately impacted by closures around their home port. Given where and when the mackerel and longfin squid fisheries are conducted, mackerel participants are more likely to be impacted than longfin squid participants, who tend to fish offshore in the winter months.

8f. Make the above measures 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong only effective if/when they are effective for Atlantic Herring vessels, including if they become effective in the middle of a season because a catch-cap based trigger is reached by the
Atlantic Herring fleet under a trigger established by Amendment 5 to the Atlantic Herring FMP.

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

8f, which would make any of the requirements selected in this Alternative Set only applicable when the same measures were in effect for the Atlantic Herring fishery, would thus only be chosen if at least one alternative among 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong was also chosen. The effect of 8f is essentially that the Hotspot alternatives would only be implemented if they are also implemented for Atlantic herring in a kind of light-switch on-off fashion. Thus the impact of 8f is the same as the action alternatives described above if the measures also apply to Atlantic herring and it is the same as the no-action alternative if no hotspot measures are implemented for Atlantic herring.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

8f, which would make any of the requirements selected in this Alternative Set only applicable when the same measures were in effect for the Atlantic Herring fishery, would thus only be chosen if at least one alternative among 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong was also chosen. The effect of 8f is essentially that the Hotspot alternatives would only be implemented if they are also implemented for Atlantic herring in a kind of light-switch on-off fashion. Thus the impact of 8f is the same as the action alternatives described above if the measures also apply to Atlantic herring and it is the same as the no-action alternative if no hotspot measures are implemented for Atlantic herring.

3. Habitat Impacts Including EFH

8f, which would make any of the requirements selected in this Alternative Set only applicable when the same measures were in effect for the Atlantic Herring fishery, would thus only be chosen if at least one alternative among 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong was also chosen. The effect of 8f is essentially that the Hotspot alternatives would only be implemented if they are also implemented for Atlantic herring in a kind of light-switch on-off fashion. Thus the impact of 8f is the same as the action alternatives described above if the measures also apply to Atlantic herring and it is the same as the no-action alternative if no hotspot measures are implemented for Atlantic herring.

4. Protected Resources

8f, which would make any of the requirements selected in this Alternative Set only applicable when the same measures were in effect for the Atlantic Herring fishery, would thus only be chosen if at least one alternative among 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong was also chosen. The effect of 8f is essentially that the Hotspot alternatives would only be implemented if they are also implemented for Atlantic herring in a kind of light-switch on-off fashion. Thus the impact of 8f is the same as the action alternatives described above if the
measures also apply to Atlantic herring and it is the same as the no-action alternative if no hotspot measures are implemented for Atlantic herring.

5. Human Communities

8f, which would make any of the requirements selected in this Alternative Set only applicable when the same measures were in effect for the Atlantic Herring fishery, would thus only be chosen if at least one alternative among 8cMack, 8cLong, 8dMack, 8dLong, 8eMack, or 8eLong was also chosen. The effect of 8f is essentially that the Hotspot alternatives would only be implemented if they are also implemented for Atlantic herring in a kind of light-switch on-off fashion. Thus the impact of 8f is the same as the action alternatives described above if the measures also apply to Atlantic herring and it is the same as the no-action alternative if no hotspot measures are implemented for Atlantic herring.

Alternative Set 8 Summary - Hotspot Restrictions

1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

The alternatives in this section, for either mackerel or longfin squid, and inside the so called “hotspots”, would either require observers for catches greater than incidental levels (“8c” alternatives), prohibit slippage (“8d” alternatives), or require the use of mesh greater than 5.5 inches for catches greater than incidental levels (“8e” alternatives). 8b would make such alternatives frameworkable and 8f would make such alternatives effective only when similar measures were in effect for the Atlantic Herring fishery. None of these alternatives are expected to substantially affect the managed resources because the hotspot areas are small while the managed resources are widely distributed and migrate throughout the coastal and shelf waters of the Mid-Atlantic and northeast U.S. coast. While there may be less fish caught within a hotspot, total catch is not expected to be substantially impacted – fishing effort and catch may be redistributed slightly but not reduced overall. Also, while more or less information may be collected within a hotspot because of these alternatives depending on fishery participant behavior, overall information quantity and quality is not likely to change because of the small areas impacted.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

As with the managed resources, while fishing effort may be redistributed slightly it is not expected to be reduced overall, which means that no substantial impacts are expected on non-target species including RH/S. While the so-called hotspots do contain areas of relatively higher RH/S catch, they are also generally the areas of higher effort and redistributing effort may just result in new hotspots. The nature of within-year and inter-annual variability of RH/S distributions (see appendices 1 and 2) does not support a conclusion that limiting fishing access to the hotspots is likely to reduce overall RH/S catches, though it would likely reduce catch.
within the hotspot. Also, while more or less information may be collected within a hotspot because of these alternatives depending on fishery participant behavior, overall information quantity and quality is generally not likely to change because of the small areas impacted. The alternatives to reduce slippage (8d) could improve observer data if vessels keep fishing in the hotspot areas.

3. **Habitat Impacts Including EFH**

Since the action alternatives are likely to involve only relatively minor re-distributions of effort related to the small area-based observer requirements, area-based slippage prohibitions, or area-based gear requirements, negligible impacts are expected.

4. **Protected Resources**

Since the action alternatives are likely to involve only relatively minor re-distributions of effort related to the small area-based observer requirements, area-based slippage prohibitions, or area-based gear requirements, negligible impacts are expected.

5. **Human Communities**

Commercial participants would have to re-distribute their effort to some degree but could probably adjust with relatively low costs. However, smaller operations located near the closed areas could be disproportionately impacted in that they could have to travel beyond the relevant restricted areas. Minimal benefits related to conservation gains would be expected due to the lack of expected overall conservation improvements.

Comparison of Alternative Sets 7 and 8

As stated above, given the overlapping nature of Alternative Sets 7 and 8, it is not expected that alternatives would be chosen from both Alternative Sets 7 and 8 for one fishery. One could select an alternative for the longfin squid fishery from one set and for the mackerel fishery from another set, but not from both sets for one fishery. There are some hotspot areas north of Cape Cod that are not covered by Alternative Set 7’s larger areas but there is relatively low mackerel and/or longfin squid activity in those areas at the relevant times of the year. Because of Alternative Set 8’s small areas (hotspots) the difference in terms of impacts are not expected to be proportionally less for Set 8 compared to Set 7. Rather, Set 8 would be expected to have negligible impacts across resource types due to fishery participants’ abilities to redistribute effort, which could not occur to the same degree with Set 7 given how large the areas are in Set 7.
7.9 Summary by VEC of preferred alternatives' impacts

Impacts by VEC have been summarized for each alternative set but not yet overall for the combined set of preferred alternatives. Before the impacts are summarized by VEC for the preferred alternatives, below follows a summary of all the preferred alternatives:

The preferred alternatives would: require weekly VTR reporting for all MSB vessel permits (1c); require a 48-hour pre directed mackerel trip notification (1d48); require VMS and daily VMS catch reporting for mackerel and longfin squid vessels (1eMack, 1eLong, 1fMack, and 1fLong); and require a 6-hour pre-landing notification via VMS for mackerel landings greater than 20,000 pounds (1gMack). The preferred alternatives would also require federal MSB dealers to weigh all landings of mackerel over 20,000 pounds (2d) and longfin squid over 2,500 pounds (2f) or document why they cannot weight landings (2g). (If all fish are not weighed separately, dealers would have to document with each transaction how they estimate the relative composition of mixed catches.). The preferred alternatives would also require for mackerel and longfin-butterfish permits that: reasonable assistance be provided to observers (3b); notice of haul-back or pumping be provided to observers (3c); one observer is provided for each vessel on pair-trawl operations whenever possible (3d). Unless safety, mechanical, or spiny dogfish issues make it inappropriate, the same vessels would not be able to release hauls of fish (“slippage”) prior to observer documentation, and catch affidavits would have to be completed for any pre-observed net release (3j). For mackerel limited access vessels, there would also be a fleet-wide cap of 10 non-emergency (safety, mechanical, spiny dogfish) slippages after which further non-emergency slippages would require a vessel to terminate their trip (3I). The Council also made implementation of additional portside monitoring and catch avoidance based on portside monitoring frameworkable (4f). The Council recommended 100% observer coverage of mid-water trawl (MWT) mackerel trips (5b4) as well as tiered coverage levels for small mesh bottom trawl mackerel trips (100% for Tier 1, 50% for Tier 2, and 25% for Tier 3) (5c4) along with requiring mackerel vessels to pay $325 when they carry observers to help fund the desired coverage levels (5f). Coverage levels would be re-evaluated after 2 years (5h). Since RH/S catch is greatest in the mackerel fishery, and current analysis suggested that area-based could not be determined to be an effective measure, the Council recommended mortality caps for RH/S on the mackerel fishery (6b and 6c) and added future mortality caps and hotspot closures as frameworkable actions (6f and 8b respectively).
1. Managed Resources Impacts (mackerel, Illex, butterfish, longfin squid)

None of the preferred alternatives are likely to substantially impact the mackerel, Illex, butterfish, or longfin squid stocks. These fisheries are already managed with hard quotas and weekly dealer monitoring designed to ensure sustainability. In addition, a variety of mechanisms (closure thresholds, trip limits, closure projection exercises by NMFS), buffer against overages. The preferred reporting and monitoring alternatives (1c, 1d48, 1eMack, 1eLong, 1fMack, 1fLong, 1gMack, 2d, 2f, 2g, 3b, 3c, 3d, 3j, 3l, 4f, 5b4, 5c4, 5f, 5h) will result in improved reporting and monitoring which could marginally improve NMFS' ability to effectively close the MSB fisheries when needed, which increases sustainability and so would have small positive impacts for the managed resources. The improved reporting and monitoring could also lead to better discard estimation (of managed species) which could lead to improved management. The preferred alternatives that could directly limit effort in the mackerel fishery (6b, 6c), could lead to larger MSB stocks, but impacts should be minimal since management already strives for sustainability.

Allowing mortality caps and area-based closures to be frameworkable actions (6f, 8b) should not have any impacts other than allowing more rapid management responses. Impacts would be analyzed at the time of framework consideration and no immediate impacts would be expected for any VEC. Any potential follow-up actions would be subsequently analyzed and considered separately.

2. Non-target Species Impacts (Including RH/S and species managed in other plans)

The preferred reporting and monitoring alternatives (1c, 1d48, 1eMack, 1eLong, 1fMack, 1fLong, 1gMack, 2d, 2f, 2g, 3b, 3c, 3d, 3j, 3l, 4f, 5b4, 5c4, 5f, 5h) will result in improved reporting and monitoring which should indirectly lead to positive benefits for non-target species because non-target interactions should be better documented and/or estimated, which in turn should assist effective management/minimization of non-target interactions. If industry has to pay for the observer coverage recommended in 5b4 and 5c4, overall mackerel effort could be reduced which would lead to benefits for non-target species. The preferred alternatives that could directly limit effort in the mackerel fishery once a certain amount of RH/S is caught (6b, 6c), could reduce negative impacts on non-target species, especially RH/S, though how much any reduced RH/S catches in the mackerel fishery affect overall RH/S abundance is unknown.

Allowing mortality caps and area-based closures to be frameworkable actions (6f, 8b) should not have any impacts other than allowing more rapid management responses. Impacts would be analyzed at the time of framework consideration and no immediate impacts would be expected for any VEC. Any potential follow-up actions would be subsequently analyzed and considered separately.
3. **Habitat Impacts Including EFH**

The preferred reporting and monitoring alternatives (1c, 1d48, 1eMack, 1eLong, 1fMack, 1fLong, 1gMack, 2d, 2f, 2g, 3b, 3c, 3d, 3j, 3l, 4f, 5b4, 5c4, 5f, 5h) should have negligible impacts on habitat. If industry has to pay for the observer coverage recommended in 5b4 and 5c4, overall mackerel effort could be reduced which would lead to benefits for habitat (but probably negligible since most mackerel have been caught with mid-water gear recently). The preferred alternatives that could directly limit effort in the mackerel fishery once a certain amount of RH/S is caught (6b, 6c), could reduce negative impacts on habitat (but probably negligibly since most mackerel have been caught with mid-water gear recently).

Allowing mortality caps and area-based closures to be frameworkable actions (6f, 8b) should not have any impacts other than allowing more rapid management responses. Impacts would be analyzed at the time of framework consideration and no immediate impacts would be expected for any VEC. Any potential follow-up actions would be subsequently analyzed and considered separately.

4. **Protected Resources**

The preferred reporting and monitoring alternatives (1c, 1d48, 1eMack, 1eLong, 1fMack, 1fLong, 1gMack, 2d, 2f, 2g, 3b, 3c, 3d, 3j, 3l, 4f, 5b4, 5c4, 5f, 5h) will result in improved reporting and monitoring which should indirectly lead to positive benefits for protected resources because interactions should be better documented and/or estimated, which in turn should assist effective management/minimization of interactions. If industry has to pay for the observer coverage recommended in 5b4 and 5c4, overall mackerel effort could be reduced which would lead to benefits for protected resources. The preferred alternatives that could directly limit effort in the mackerel fishery once a certain amount of RH/S is caught (6b, 6c), could reduce interactions as well.

Allowing mortality caps and area-based closures to be frameworkable actions (6f, 8b) should not have any impacts other than allowing more rapid management responses. Impacts would be analyzed at the time of framework consideration and no immediate impacts would be expected for any VEC. Any potential follow-up actions would be subsequently analyzed and considered separately.

5. **Human Communities**

The overall human community impacts are best described as mixed with unknown overall impacts. Most of the preferred reporting and monitoring alternatives should have negligible or minimal impacts on how the fisheries operate (1c, 1d48, 1eMack, 1eLong, 1fMack, 1fLong, 1gMack, 2d, 2f, 2g, 3b, 3c, 3d, 3j, 3l, 4f, 5h). Provisions for mandatory industry funding of observer coverage (5b4, 5c4, 5f) would substantially raise fishing costs, and measures that could directly limit effort in the mackerel fishery once a certain amount of RH/S is caught (6b, 6c), could reduce future fishing revenues as well, though the amount depends on what is set in specifications, which will be analyzed in specifications at a later date.
Allowing mortality caps and area-based closures to be frameworkable actions (6f, 8b) should not have any impacts other than allowing more rapid management responses. Impacts would be analyzed at the time of framework consideration and no immediate impacts would be expected for any VEC. Any potential follow-up actions would be subsequently analyzed and considered separately.

To the extent that the preferred alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other species, then the preferred alternatives should result in long term additional benefits related to future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). However, due to the uncertainty about how the productivity of RH/S is impacted by current catch levels in the MSB fisheries, it is difficult to quantity such benefits. The amount of benefit to RH/S stocks from any action affecting the MSB fisheries is unknown, so even though one might contemplate what the value of rebuilt RH/S fisheries might be, it is not possible to know if an action in this document might lead to rebuilt RH/S fisheries because of the range of issues likely affecting RH/S stocks.

8.0 Cumulative Effects Assessment

A cumulative effects assessment (CEA) is a required part of an EIS according to the Council on Environmental Quality (CEQ) (40 CFR part 1508.7). The purpose of the CEA is to integrate into the impact analyses the combined effects of many actions over time that would be missed if each action were evaluated separately. CEQ guidelines recognize that it is not practical to analyze the cumulative effects of an action from every conceivable perspective but rather, the intent is to focus on those effects that are truly meaningful. This section serves to examine the potential direct and indirect effects of the alternatives in Amendment 14 together with past, present, and reasonably foreseeable future actions that affect the MSB environment. It may be noted that the predictions of potential synergistic effects from multiple actions, past, present and/or future will generally be qualitative in comparison to the analysis of the effects of individual actions given in Section 7.0.

The assessment presented here is explicitly structured upon the CEQ’s 11-step CEA process that is described in their 1997 report, “Considering Cumulative Effects under the National Environmental Policy Act” (CEQ 1997). These eleven steps are itemized below:

The CEQ’s eleven step CEA process. Taken from Table 1-5 in CEQ (1997).

1. Identify the significant cumulative effects issues associated with the proposed action and define the assessment goals.
2. Establish the geographic scope for the analysis.

3. Establish the timeframe for the analysis.

4. Identify other actions affecting the resources, ecosystems, and human communities of concern.

5. Characterize the resources, ecosystems, and human communities identified in scoping in terms of their response to change and capacity to withstand stresses.

6. Characterize the stresses affecting these resources, ecosystems, and human communities and their relation to regulatory thresholds.

7. Define a baseline condition for the resources, ecosystems, and human communities.

8. Identify the important cause-and-effect relationships between human activities and resources, ecosystems, and human communities.

9. Determine the magnitude and significance of cumulative effects.

10. Modify and add alternatives to avoid, minimize, or mitigate significant cumulative effects.

11. Monitor the cumulative effects of the selected alternative(s) and adapt management.

To a great extent, the descriptions and analyses presented in previous sections of this document have contributed to the completion of most of the CEQ's eleven steps, however; the purpose of this section of the document is to point out to the reader how these steps have been accomplished within the development of Amendment 14 and its accompanying environmental impact analyses.

8.1 Cumulative Effects from Proposed Action and Assessment Goals

In Section 6.0 (Description of the Affected Environment) the valued ecosystem components (VECs) that exist within the MSB fishery environment are identified and the basis for their selection is established. This is associated with the completion of Step 1 in the CEQ’s 11-Step process. The VECs are listed below.

1. Managed Resources
 - Atlantic mackerel stock
 - Illex stock
 - Longfin squid stock
 - Atlantic butterfish stock

2. Non-target species
3. Habitat including EFH for the managed resources and non-target species
4. Endangered and other protected resources
5. Human Communities

8.2 Geographic Boundaries

The analysis of impacts focuses primarily on actions related to the harvest of the managed resources. Therefore, the geographic area used to define the core geographic scope for managed resources, non-target species, habitat, and endangered and protected species was the area within which the majority of harvest effort for the managed resources occurs (See Figure 22). For human communities, the core geographic boundaries are defined as those U.S. fishing communities directly involved in the harvest of the managed resources. These communities were found to occur in coastal states from Maine to North Carolina.

8.3 Temporal Boundaries

The temporal scope of past and present actions for managed resources, non-target species, habitat and human communities is primarily focused on actions that have occurred after FMP implementation (1979). For endangered and other protected species, the scope of past and present actions is on a species-by-species basis (Section 6.4) and is largely focused on the 1980s and 1990s through the present, when NMFS began generating stock assessments for marine mammals and turtles that inhabit waters of the U.S. EEZ. The temporal scope of future actions for all five VECs, which includes the measures proposed by this amendment, extends five years into the future following the expected implementation in 2014 (i.e., ~2019). This period was chosen because the dynamic nature of resource management and lack of information on projects that may occur in the future makes it difficult to predict impacts beyond this timeframe with any certainty.

8.4 Identify Other Action Affecting the Resources, Ecosystems, and Human Communities of Concern.

Table 75 accomplishes Step 4 of the CEQ process which calls for the identification of other actions that affect the VECs, i.e., actions other than those being developed in this document. These actions are presented in chronological order, and codes indicate whether an action relates to the past (P), present (Pr), or reasonably foreseeable future (RFF). When any of these abbreviations occur together, it indicates that some past actions are still relevant to the present and/or future. A brief explanation of the rationale for concluding what effect each action has (or will have) had on each of the VECs is provided in the table and is not repeated here.

Note that most of these other actions come from fishery-related activities (e.g., Federal fishery management actions). As expected, these activities have fairly straight-forward effects on environmental conditions, and were, are, or will be taken, in large part, to improve those conditions. The reason for this is the statutory basis for Federal fisheries management - the MSA, as amended in 1996 and 2007. That legislation was enacted to promote long-term positive
impacts on the environment in the context of fisheries activities. More specifically the act stipulates that management comply with a set of National Standards that collectively serve to optimize the conditions of the human environment. Under this regulatory regime, the cumulative impacts of past, present, and future Federal fishery management actions on the VECs should be expected to result in positive long-term outcomes. Nevertheless, these actions are often associated with offsetting impacts. For example, constraining effective fishing effort (e.g., minimum mesh size for longfin squid in Amendment 5) may result in negative short-term socio-economic impacts for fishery participants (added cost of modifying gear). However, these impacts are usually necessary to bring about long-term sustainability of a given resource (in this case, increasing butterfish escapement, albeit marginally), and as such, should, in the long-term, promote positive effects on human communities, especially those that are economically dependent upon the managed resource.

Non-fishing activities that have meaningful effects on the VECs include the introduction of chemical pollutants, sewage, changes in water temperature, salinity, dissolved oxygen, and suspended sediment into the marine environment. These activities pose a risk to the all of the identified VECs in the long term. Human induced non-fishing activities that affect the VECs under consideration in this document are those that tend to be concentrated in nearshore areas. Examples of these activities include, but are not limited to agriculture, port maintenance, beach nourishment, coastal development, marine transportation, marine mining, dredging and the disposal of dredged material. Wherever these activities co-occur, they are likely to work additively or synergistically to decrease habitat quality and, as such, may indirectly lower the maximum sustainable yield of the managed resources, and negatively affect non-target species and protected resources. Decreased habitat suitability would tend to reduce the tolerance of these VECs to the impacts of fishing effort. Mitigation of this outcome through regulations that would reduce fishing effort could then negatively impact human communities.

The overall impacts of these other (past, present, and reasonably foreseeable) actions are summarized in Table 75 and discussed below. These impacts, in addition to the impacts of the management actions being developed in this document (Section 7.0), comprise the total cumulative effects that will contribute to the significance determination for each of the VECs exhibited later in Table 76.
Table 75. Impacts of Past, Present and Reasonably Foreseeable Future Actions on the five VECs. These actions do not include those under consideration in this Amendment.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
<th>Impacts on Managed Resources</th>
<th>Impacts on Non-target Species</th>
<th>Impacts on Habitat and EFH</th>
<th>Impacts on Protected Species</th>
<th>Impacts on Human Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Prosecution of the MSB fisheries by foreign fleets in the area that would become the U.S. EEZ (prior to implementation of the MSA)</td>
<td>Foreign fishing pressure peaked in the 1960s and slowly declined until passage of the MSA and implementation of the FMPs</td>
<td>Direct High Negative Foreign fishing depleted Atl. Mackerel stock below biomass threshold</td>
<td>Potentially Direct High Negative Limited information on discarding, but fishing effort was very high</td>
<td>Potentially Direct High Negative Limited information on discarding, but fishing effort was very high</td>
<td>Potentially Indirect Negative Revenue from fishing benefited foreign businesses</td>
</tr>
<tr>
<td>P, Pr</td>
<td>Original FMPs (3) implemented (1978 and 1979)</td>
<td>Established management of the MSB fisheries</td>
<td>Indirect Positive Regulatory tool available to rebuild and manage stocks</td>
<td>Indirect Positive Reduced fishing effort</td>
<td>Indirect Positive Reduced fishing effort</td>
<td>Indirect Positive Benefited domestic businesses</td>
</tr>
<tr>
<td>P, Pr</td>
<td>Original FMPs merged (1983)</td>
<td>Consolidated management of the MSB fisheries under one FMP</td>
<td>No Impact Administrative procedure</td>
<td>No Impact Administrative procedure</td>
<td>No Impact Administrative procedure</td>
<td>No Impact Administrative procedure</td>
</tr>
<tr>
<td>P, Pr</td>
<td>Amendment 2 to the MSB FMP (1986)</td>
<td>Revised squid discard foreign fishing allowances</td>
<td>Indirect Positive Reduced squid mortality</td>
<td>Indirect Positive Reduced fishing effort</td>
<td>Indirect Positive Reduced fishing effort</td>
<td>Indirect Positive Benefited domestic businesses</td>
</tr>
<tr>
<td>P</td>
<td>Amendment 3 to the MSB FMP (1991)</td>
<td>Established overfishing definitions for all four species</td>
<td>Indirect Positive Provided basis for sustainable management</td>
<td>Indirect Low Positive Reduced fishing effort</td>
<td>Indirect Low Positive Reduced fishing effort</td>
<td>Indirect Positive Increased probability of long term sustainability</td>
</tr>
<tr>
<td>P</td>
<td>Amendment 4 to the MSB FMP (1991)</td>
<td>Limited activity of directed foreign fishing and JV transfers to foreign vessels</td>
<td>Indirect Low Positive Reduced fishing effort</td>
<td>Indirect Low Positive Reduced fishing effort</td>
<td>Indirect Low Positive Reduced fishing effort</td>
<td>Indirect Positive Benefited domestic businesses</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
<td>Impacts on Managed Resources</td>
<td>Impacts on Non-target Species</td>
<td>Impacts on Habitat and EFH</td>
<td>Impacts on Protected Species</td>
<td>Impacts on Human Communities</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>P, Pr</td>
<td>Amendment 5 to the MSB FMP (1996)</td>
<td>Eliminated foreign fisheries for squids and butterfish</td>
<td>Potentially Indirect Positive Reduced effort</td>
<td>Potentially Indirect Positive Reduced effort</td>
<td>Potentially Indirect Positive Reduced effort</td>
<td>Indirect Positive Benefited domestic businesses</td>
</tr>
<tr>
<td>P, Pr</td>
<td></td>
<td>Implemented limited access for squid/butterfish</td>
<td>Indirect Positive Constrained fishing effort</td>
<td>Indirect Positive Constrained fishing effort</td>
<td>Indirect Positive Constrained fishing effort</td>
<td>Indirect Positive Reduced overcapacity</td>
</tr>
<tr>
<td>P, Pr</td>
<td></td>
<td>Expanded mg. unit to all four species</td>
<td>No Impact Administrative</td>
<td>No Impact Administrative</td>
<td>No Impact Administrative</td>
<td>No Impact Administrative</td>
</tr>
<tr>
<td>P, Pr</td>
<td></td>
<td>Establish longfin squid minimum mesh size (included exemption for Illex fishery)</td>
<td>Low Positive Marginal increase in butterfish escapement</td>
<td>Direct Positive Increased finfish escapement</td>
<td>Unknown Changes in fishing effort unknown</td>
<td>Unknown Changes in fishing effort unknown</td>
</tr>
<tr>
<td>P, Pr</td>
<td>Amendment 8 to the MSB FMP (1998)</td>
<td>Brought FMP into compliance with new and revised National Standards</td>
<td>Indirect Positive Improved regulatory tool for ensuring sustainability</td>
<td>Indirect Positive Strengthened mandate to reduce discards</td>
<td>Indirect Positive Strengthened mandate to protect habitat</td>
<td>Indirect Positive</td>
</tr>
<tr>
<td>P, Pr</td>
<td></td>
<td>Established scup small mesh gear restricted areas</td>
<td>Potentially Indirect Positive Reduced fishing effort locally</td>
<td>Potentially Indirect Positive Reduced fishing effort locally</td>
<td>Potentially Indirect Positive Reduced fishing effort locally</td>
<td>Indirect Negative (long term) Cost of modifying gear</td>
</tr>
<tr>
<td>P, Pr</td>
<td>Framework 2 to the MSB FMP (2002)</td>
<td>Extended moratorium on entry into limited access Illex fishery</td>
<td>Indirect Positive Constrain harvest capacity</td>
<td>Indirect Positive Constrain fishing effort</td>
<td>Indirect Positive Constrain fishing effort</td>
<td>Potentially Indirect Positive Prevented increases in capacity</td>
</tr>
<tr>
<td>P, Pr</td>
<td>Framework 3 to the MSB FMP (2003)</td>
<td>Extended by one year moratorium on entry into limited access Illex fishery</td>
<td>Indirect Positive Constrain harvest capacity</td>
<td>Indirect Positive Constrain fishing effort</td>
<td>Indirect Positive Constrain fishing effort</td>
<td>Potentially Indirect Positive Prevented increases in capacity</td>
</tr>
<tr>
<td>P, Pr</td>
<td>Framework 4 to the MSB FMP (2004)</td>
<td>Extended by five years moratorium on entry into limited access Illex fishery</td>
<td>Indirect Positive Constrain harvest capacity</td>
<td>Indirect Positive Constrain fishing effort</td>
<td>Indirect Positive Constrain fishing effort</td>
<td>Potentially Indirect Positive Prevented increases in capacity</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
<td>Impacts on Managed Resources</td>
<td>Impacts on Non-target Species</td>
<td>Impacts on Habitat and EFH</td>
<td>Impacts on Protected Species</td>
<td>Impacts on Human Communities</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>PPA</td>
<td>Multiple year specs</td>
<td>No Impact Administrative</td>
</tr>
<tr>
<td></td>
<td>Extend Illex moratorium</td>
<td>Positive Would decrease the likelihood that the fishing quota would be exceeded</td>
<td>Positive Constrains effort</td>
<td>No Impact If current trawling effort is maintained, would not increase habitat disturbances.</td>
<td>Positive Constrains effort</td>
<td>Potentially Positive Maintains net benefits to fleet and dependent communities by limiting overcapitalization.</td>
</tr>
<tr>
<td></td>
<td>Revise biological reference points for longfin squid</td>
<td>Potentially Positive Increase chance of achieving long term sustainable yield for longfin squid.</td>
<td>Potential low negative May increase effort slightly if it results in a higher quota.</td>
<td>Potential low negative May increase effort slightly if it results in a higher quota.</td>
<td>Potential low negative May increase effort slightly if it results in a higher quota.</td>
<td>Potential low positive May increase benefits slightly if it results in a higher quota.</td>
</tr>
<tr>
<td></td>
<td>Designate EFH for longfin squid eggs based on documented observations of egg mops</td>
<td>Potentially positive if used as basis for future management.</td>
<td>Potentially positive if used as basis for future management.</td>
<td>Potentially positive if used as basis for future management.</td>
<td>Potentially positive if used as basis for future management.</td>
<td>Potentially positive long term if used as basis for future management to improve long-term sustainability of resource.</td>
</tr>
<tr>
<td></td>
<td>Area closures to reduce gear impacts on EFH</td>
<td>Low positive Small area with low effort impacted</td>
<td>Low positive Small area with low effort impacted</td>
<td>Low positive Protects deep-sea corals in small area.</td>
<td>Low positive Small area with low effort impacted</td>
<td>No impact Small area with low effort impacted</td>
</tr>
<tr>
<td>RFFA</td>
<td>Amendment 5 to Atlantic Herring FMP – See Appendix 4</td>
<td>Addresses reporting, monitoring, and RH catch in the Atl. herring fishery</td>
<td>Indirect Positive May improve data quality for monitoring total removals</td>
<td>Positive May increase information about RH/S catch and/or reduce that catch</td>
<td>Probably Minimal</td>
<td>Probably Minimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
<td>Impacts on Managed Resources</td>
<td>Impacts on Non-target Species</td>
<td>Impacts on Habitat and EFH</td>
<td>Impacts on Protected Species</td>
<td>Impacts on Human Communities</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Pr Amendment 10 to the MSB FMP (2010-2011)</td>
<td>Rebuild Butterfish with butterfish mortality cap.</td>
<td>Positive Stock Rebuilding</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Variable</td>
</tr>
<tr>
<td>Pr Atlantic Trawl Gear Take Reduction Team</td>
<td>Recommend measures to reduce mortality and injury to the common dolphin and long fin pilot whale</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Indirect Negative</td>
</tr>
<tr>
<td></td>
<td>Recommend measures to monitor discards at an acceptable level of precision and accuracy</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Potentially Indirect Negative</td>
</tr>
<tr>
<td>P Pr Omnibus ACL/AM Amendment (2011)</td>
<td>Implemented ACLs/AMs in all FMPs as necessary</td>
<td>Neutral</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>P Pr Amendment 11 to the MSB FMP (2010-2011)</td>
<td>Updated EFH, established Rec-Com allocation, will implement mackerel limited access</td>
<td>Positive – limited access should limit race to fish</td>
<td>Indirect Positive</td>
<td>Potentially positive if used as basis for future management.</td>
<td>Indirect Positive Constrain fishing effort</td>
<td>Positive</td>
</tr>
<tr>
<td>RFEA Strategy for Sea Turtle Conservation for the Atlantic Ocean and the Gulf of Mexico Fisheries</td>
<td>May recommend strategies to prevent the catch of sea turtles in commercial fisheries operations</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Indirect Positive</td>
<td>Indirect Negative</td>
<td>Reducing availability of gear could reduce revenues</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
<td>Impacts on Managed Resources</td>
<td>Impacts on Non-target Species</td>
<td>Impacts on Habitat and EFH</td>
<td>Impacts on Protected Species</td>
<td>Impacts on Human Communities</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Pr. Standardized Bycatch Reporting Methodology Revision</td>
<td>Recommend measures to monitor discards at an acceptable level of precision and accuracy</td>
<td>Indirect Positive Will improve data quality for monitoring total removals of managed resources</td>
<td>Indirect Positive Will improve data quality for monitoring removals of non-target species</td>
<td>Neutral Will not affect distribution of effort</td>
<td>Indirect Positive Will increase and/or optimize observer coverage</td>
<td>Potentially Indirect Negative May impose an inconvenience on vessel operations</td>
</tr>
<tr>
<td>Pr. Amendment 15 to the MSB FMP</td>
<td>Considering adding RH/S as Council-managed species</td>
<td>Neutral</td>
<td>Positive Would increase RH/S conservation efforts</td>
<td>Potentially positive MSB effort may be reduced</td>
<td>Potentially positive MSB effort may be reduced</td>
<td>Uncertain overall</td>
</tr>
<tr>
<td>Pr. Amendment 16 to the MSB FMP</td>
<td>Considering adding deep-sea coral protections</td>
<td>Neutral</td>
<td>Positive Could decrease impacts on deep-sea corals from MSB fishing</td>
<td>Potentially positive MSB effort may be reduced</td>
<td>Potentially positive MSB effort may be reduced</td>
<td>Uncertain overall</td>
</tr>
<tr>
<td>Pr. Amendment 17 to the MSB FMP</td>
<td>Considering modifications to recreational accountability measures</td>
<td>Neutral - Overall MSB effort unlikely to be impacted.</td>
<td>Neutral - Overall MSB effort unlikely to be impacted.</td>
<td>Neutral - Overall MSB effort unlikely to be impacted.</td>
<td>Neutral - Overall MSB effort unlikely to be impacted.</td>
<td>Neutral</td>
</tr>
</tbody>
</table>

Non-Fishery Related Actions Follow on Next Page
<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
<th>Impacts on Managed Resources</th>
<th>Impacts on Non-target Species</th>
<th>Impacts on Habitat and EFH</th>
<th>Impacts on Protected Species</th>
<th>Impacts on Human Communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, Pr, RFFA</td>
<td>Agriculture runoff</td>
<td>Nutrients applied to agriculture land are introduced into aquatic systems</td>
<td>Indirect Negative Reduced habitat quality in the immediate project area</td>
<td>Indirect Negative Reduced habitat quality in the immediate project area</td>
<td>Direct Negative Reduced habitat quality in the immediate project area</td>
<td>Indirect Negative Reduced habitat quality negatively affects resource viability in the immediate project area</td>
</tr>
<tr>
<td>P, Pr, RFFA</td>
<td>Port maintenance</td>
<td>Dredging of wetlands, coastal, port and harbor areas for port maintenance</td>
<td>Indirect Negative Localized decreases in habitat quality</td>
<td>Indirect Negative Localized decreases in habitat quality in the immediate project area</td>
<td>Direct Negative Reduced habitat quality in the immediate project area</td>
<td>Indirect Negative Reduced habitat quality negatively affects resource viability in the immediate project area</td>
</tr>
<tr>
<td>P, Pr, RFFA</td>
<td>Offshore disposal of dredged materials</td>
<td>Disposal of dredged materials</td>
<td>Indirect Negative Localized decreases in habitat quality in the immediate project area</td>
<td>Indirect Negative Localized decreases in habitat quality in the immediate project area</td>
<td>Direct Negative Reduced habitat quality in the immediate project area</td>
<td>Indirect Negative Reduced habitat quality negatively affects resource viability in the immediate project area</td>
</tr>
<tr>
<td>P, Pr, RFFA</td>
<td>Beach nourishment</td>
<td>Offshore mining of sand for beaches</td>
<td>Indirect Negative Localized decreases in habitat quality in the immediate project area</td>
<td>Indirect Negative Localized decreases in habitat quality in the immediate project area</td>
<td>Direct Negative Reduced habitat quality in the immediate project area</td>
<td>Mixed Positive for mining companies, possibly negative for fisheries</td>
</tr>
<tr>
<td>P, Pr, RFFA</td>
<td>Marine transportation</td>
<td>Placement of sand to nourish beach shorelines</td>
<td>Indirect Negative Localized decreases in habitat quality in the immediate project area</td>
<td>Indirect Negative Localized decreases in habitat quality in the immediate project area</td>
<td>Direct Negative Reduced habitat quality in the immediate project area</td>
<td>Positive Beachgoers generally like sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expansion of port facilities, vessel operations and recreational marinas</td>
<td>Indirect Negative Localized decreases in habitat quality in the immediate project area</td>
<td>Indirect Negative Localized decreases in habitat quality in the immediate project area</td>
<td>Direct Negative Reduced habitat quality in the immediate project area</td>
<td>Mixed Positive for some interests, potential displacement for others</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
<td>Impacts on Managed Resources</td>
<td>Impacts on Non-target Species</td>
<td>Impacts on Habitat and EFH</td>
<td>Impacts on Protected Species</td>
<td>Impacts on Human Communities</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>P, Pr, RFFA</td>
<td>Installation of pipelines, utility lines and cables</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Potentially Direct Negative Reduced habitat quality in the immediate project area</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Transportation of oil, gas and energy through pipelines, utility lines and</td>
<td>Dependent on mitigation</td>
<td>Negative</td>
<td>Dependent on mitigation effects</td>
<td>Dependent on mitigation</td>
<td>Dependent on mitigation</td>
</tr>
<tr>
<td></td>
<td>cables</td>
<td>effects</td>
<td></td>
<td></td>
<td>effects</td>
<td>effects</td>
</tr>
<tr>
<td>RFFA</td>
<td>Liquefied Natural Gas terminals (w/in 5 years)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Potentially Direct Negative Localized decreases in habitat quality possible in the immediate</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Transportation of natural gas via tanker to terminals located offshore and</td>
<td>Dependent on mitigation</td>
<td>Negative</td>
<td>project area</td>
<td>Dependent on mitigation</td>
<td>Dependent on mitigation</td>
</tr>
<tr>
<td></td>
<td>onshore (Several Liquefied Natural Gas terminals are proposed, including</td>
<td>effects</td>
<td></td>
<td></td>
<td>effects</td>
<td>effects</td>
</tr>
<tr>
<td></td>
<td>MA, RI, NY, NJ and DE)</td>
<td></td>
<td></td>
<td></td>
<td>effects</td>
<td>effects</td>
</tr>
<tr>
<td>RFFA</td>
<td>Offshore Wind Energy Facilities (medium probability w/in 5 years)</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Potentially Direct Negative Localized decreases in habitat quality possible in the immediate</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Construction of wind turbines to harness electrical power (Several facilities</td>
<td>Dependent on mitigation</td>
<td>Negative</td>
<td>project area</td>
<td>Dependent on mitigation</td>
<td>Dependent on mitigation</td>
</tr>
<tr>
<td></td>
<td>proposed from ME through NC, including off the coast of MA, NY/NJ and VA)</td>
<td>effects</td>
<td></td>
<td></td>
<td>effects</td>
<td>effects</td>
</tr>
</tbody>
</table>
Summary of Non-Fishing Effects Though largely unquantifiable, it is likely that the non-fishing activities noted above would have negative impacts on habitat quality from disturbance and construction activities in the area immediately around the affected area. This would be a direct impact on habitat and an indirect effect to planktonic, juvenile, and adult life stages of fish and protected species in the project areas due to habitat degradation. Given the wide distribution of the affected species, minor overall negative effects to habitat are anticipated since the affected areas are localized to the project sites, which involve a small percentage of the fish populations and their habitat.

Summary Effects of Past and Present Actions The present conditions of the VECs are empirical indicators of the summary effects of past actions since, independent of natural processes, and these present conditions are largely the product of these past actions. The combined effects of these actions are described in the VEC-by-VEC discussion below and are summarized in Table 76.

Managed species: The status of mackerel, butterfish, Illex, and longfin squid are unknown as of November 2011. Longfin squid biomass in 2009 was established to be above an accepted target but given the short lifespan of longfin squid it’s true status, like that of the other MSB stocks, is unknown. While the negative effects of past and present actions associated with non-fishing activities (Table 75) may have increased negative effects, it is likely that those actions were minor due to the limited scale of the habitat impact compared with the populations at large.

Non-target species: The summary effects of past and present actions are less clear than for the managed resources. This is because the information needed to quantitatively measure the impacts on these species of MSB fishery activities and non-fishing activities is generally lacking. The implementation of a revised omnibus SBRM Amendment is expected to provide more data to allow management to better manage discards.

This Amendment: The preferred reporting and monitoring alternatives (1c, 1d48, 1eMack, 1eLong, 1fMack, 1fLong, 1gMack, 2d, 2f, 2g, 3b, 3c, 3d, 3j, 3l, 4f, 5b4, 5c4, 5f, 5h) will result in improved reporting and monitoring which should indirectly lead to positive benefits for non-target species because non-target interactions should be better documented and/or estimated, which in turn should assist effective management/minimization of non-target interactions. If industry has to pay for the observer coverage recommended in 5b4 and 5c4, overall mackerel effort could be reduced which would lead to benefits for non-target species. The preferred alternatives that could directly limit effort in the mackerel fishery once a certain amount of RH/S is caught (6b, 6c), could reduce negative impacts on non-target species, especially RH/S, though how much any reduced RH/S catches in the mackerel fishery affect overall RH/S abundance is unknown. Actual cap amounts will be considered and analyzed via the specifications process.

Allowing mortality caps and area-based closures to be frameworkable actions (6f, 8b) should not have any impacts other than allowing more rapid management responses. Impacts would be analyzed at the time of framework consideration and no immediate impacts would be expected for any VEC. Any potential follow-up actions would be subsequently analyzed and considered separately.

The summary effects of past and present actions on non-target species are considered to be a mixed set of partially offsetting positive effects through fishery effort reduction and negative effects through discard mortality and non-fishing activities. The prosecution of fishing activities in general will
necessarily reduce the abundance of various non-target species. As such, effort reduction or gear modifications will, in effect, reduce the magnitude of the negative impact of fishing in general. Again, although the negative effects of past and present actions associated with non-fishing activities (Table 75) may have increased negative effects, it is likely that those actions were minor due to the limited scale of the habitat impact compared with the populations at large for most species, although impacts could be large for anadromous species such as RH/S. Altogether, the resultant impact of past and present actions on non-target species is a likely net negative sum effect. Again this would likely improve with future actions to reduce discards.

Habitat and Protected Species: For the habitat and protected resource VECs, the summary effects of past and present actions are also considered to be negative. This follows the same logic presented under the discussion of impacts on non-target species: effort reduction or gear modifications will, in effect, reduce the magnitude of the negative impact on these VECs that results from fishing activities. Again, although the negative effects of past and present actions associated with non-fishing activities (Table 75) may have increased negative effects, it is likely that those actions were minor due to the limited scale of the habitat impact compared with the populations at large for most species, although impacts could be large for anadromous species such as RH/S or sturgeon. Thus, the resultant impact of past and present actions on non-target species is a net negative sum effect on these VECs.

As discussed in section 6.5.5, estimated encounters with Atlantic sturgeon and small-mesh otter trawl gear in the 600 series of statistical areas average 759 sturgeon annually. Of these small-mesh otter trawl encounters, less than 5 percent are expected to result in serious injury or mortality. For reference, estimated total annual takes for all gear types (otter trawl and sink gillnet) from 2006-2010 ranged from 1536 to 3221 (average 2,215); estimated annual mortalities for all gear types ranged from 37 to 376 sturgeon. Overall, the contribution of small-mesh otter trawl gear to sturgeon mortalities is low compared to the contribution of gillnet gear to sturgeon mortalities.

DPS-specific population levels for Atlantic sturgeon are difficult to quantify at this time, and further work needs to be done to develop accurate population estimates for each DPS. Current estimates indicate that the Hudson River DPS likely consists of approximately 870 spawning individuals in any one year. However, adult Atlantic sturgeon are not believed to spawn annually, but rather every other year for males and every two to five years for females. Although NMFS does not have information necessary to determine the sex or spawning condition of Atlantic sturgeon encountered by the MSB fisheries, these encounters may include both males and females and fish that may or may not spawn during that year. Therefore, encounters of Atlantic sturgeon by the MSB fisheries may be a subset of the entire population, as opposed to being comprised exclusively of the smaller annual spawning population.

Despite limited information that can be used to accurately estimate the number of Atlantic sturgeon in each DPS and because estimated encounters and expected mortalities are lower in recent years than has been estimated in the past, it is unlikely that the implementation of Amendment 14 would result in significant impacts under NEPA to any DPS of Atlantic sturgeon and the proposed improved monitoring could assist effective management of sturgeon. The proposed RH/S mortality caps could also reduce mackerel fishing effort. As such, the proposed action is expected to have little to no impact on total fishing effort associated with small-mesh otter trawl gear as it might impact sturgeon.
Therefore, the preferred alternatives in Amendment 14 are not likely to result in a significant impact under NEPA on Atlantic sturgeon.

Human communities:

This Amendment: The overall human community impacts are best described as mixed with unknown overall impacts. Most of the preferred reporting and monitoring alternatives should have negligible or minimal impacts on how the fisheries operate (1c, 1d48, 1eMack, 1eLong, 1fMack, 1fLong, 1gMack, 2d, 2f, 2g, 3b, 3c, 3d, 3j, 3l, 4f, 5h). Provisions for mandatory industry funding of observer coverage (5b4, 5c4, 5f) would substantially raise fishing costs, and measures that could directly limit effort in the mackerel fishery once a certain amount of RH/S is caught (6b, 6c), could reduce future fishing revenues as well, though the amount depends on what is set in specifications, which will be analyzed in specifications at a later date.

Allowing mortality caps and area-based closures to be frameworkable actions (6f, 8b) should not have any impacts other than allowing more rapid management responses. Impacts would be analyzed at the time of framework consideration and no immediate impacts would be expected for any VEC. Any potential follow-up actions would be subsequently analyzed and considered separately.

To the extent that the preferred alternatives lead to better management (i.e. sustainable fisheries producing optimal yields) of RH/S or other species, then the preferred alternatives should result in long term additional benefits related to future commercial revenues, recreational opportunities, ecosystem services, cultural values for RH/S, and/or other non-market existence values (i.e. value gained by the public related to the knowledge that these species are being conserved successfully). However, due to the uncertainty about how the productivity of RH/S is impacted by current catch levels in the MSB fisheries, it is difficult to quantity such benefits. The amount of benefit to RH/S stocks from any action affecting the MSB fisheries is unknown, so even though one might contemplate what the value of rebuilt RH/S fisheries might be, it is not possible to know if an action in this document might lead to rebuilt RH/S fisheries because of the range of issues likely affecting RH/S stocks.

The summary effect of past and present actions is complex since the effects have varied among fishery participants, consumers, and communities. Nevertheless, the net effect is considered to be positive in that the fisheries managed under the MSB FMP currently support viable domestic fisheries. While some short-term economic costs have been associated with effort reductions and gear modifications (see Table 75), economic returns have generally been positive and as such, have tended to make a positive contribution to the communities associated with harvest of these species.

Summary Effects of Future Actions As with past and present actions, the list of reasonably foreseeable future actions is provided in Table 75. Additionally, the same general trends will be noted with regard to the expected outcomes of fishery-related actions and non-fishing actions; the summary effects of fishery related actions tend to be positive with respect to natural resources although short-term negative or mixed effects are expected for human communities. Conversely, for the non-fishing actions listed in Table 75, the general outcome remains negative, but minor for all VECs, again due to the difference in scale of exposure of the habitat perturbation and the population except for
anadromous species which may be more impacted by non-fishing activities that compromise habitat and water quality.

The directionality of the impacts of future actions on the VECs will necessarily be a function of the offsetting negative vs. positive impacts of each of the actions. Since the magnitude and significance of the impacts of these future actions, especially non-fishing impacts, is poorly understood, conclusions as to the summary effects will essentially consist of an educated guess.

Recall that the future temporal boundary for this CEA is five years after implementation of the amendment (~2019; Section 8.3). Within that timeframe, the summary effects of future actions on managed resources, non-target species, habitat, and protected resources are all expected to be positive, notwithstanding the localized nearshore negative effects of non-fishing actions. The optimization of the conditions of the resources is the primary objective of the management of these natural resources. Additionally, it is unknown, but expected that technology to allow for mitigation of the negative impacts of non-fishing activities will improve.

For human communities, short-term (i.e., within the temporal scope of this CEA) costs may occur. This negative impact is expected to be the byproduct of an adjustment to the improved management of the natural resources. In the longer term, positive impacts on human communities should come about as sustainability of natural resources is attained.
Table 76. Summary effects of past, present and reasonably foreseeable future actions on the VECs identified for Amendment 14 (based on actions listed in Table 75).

<table>
<thead>
<tr>
<th>VEC</th>
<th>Past Actions (P)</th>
<th>Present Actions (Pr)</th>
<th>Reasonably Foreseeable Future Actions (RFFA)</th>
<th>Combined Effects of Past, Present, Future Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managed Resources</td>
<td>Uncertain since status of all species is currently unknown but likely positive given continued fisheries.</td>
<td>Uncertain since status of all species is currently unknown but likely positive given continued fisheries.</td>
<td>Uncertain since status of all species is currently unknown but likely positive given continued fisheries.</td>
<td>Uncertain since status of all species is currently unknown but likely positive given continued fisheries.</td>
</tr>
<tr>
<td>Non-Target Species</td>
<td>negative combined effects of discard mortality and non-fishing actions that reduce habitat quality</td>
<td>negative or somewhat less negative than past combined effects of reduced discard mortality and non-fishing actions that reduce habitat quality</td>
<td>positive reductions in discard incidence, improved discards estimation,</td>
<td>Long term positive Amendment 10, 14 measures would benefit other species, improved discards accounting, improved habitat quality</td>
</tr>
<tr>
<td>Habitat</td>
<td>negative combined effects of disturbance by fishing gear and non-fishing actions have reduced habitat quality</td>
<td>negative or somewhat less negative than past combined effects of disturbance by fishing gear and non-fishing actions have reduced habitat quality</td>
<td>positive reduction in effects of disturbance by fishing gear are expected</td>
<td>Positive long term reduced encounters through effort reduction, and Trawl take reduction research plan /Sea Turtle Strategy; improved habitat quality is expected</td>
</tr>
<tr>
<td>Protected Resources</td>
<td>negative combined effects of gear encounters and non-fishing actions that reduce habitat quality</td>
<td>Negative or somewhat less negative than past combined effects of gear encounters and non-fishing actions that reduce habitat quality</td>
<td>positive reduced gear encounters through effort reduction, and Sea Turtle Strategy; improved habitat quality is expected</td>
<td>Negative short term until trawl take reduction research plan is implemented; Positive long term reduced encounters through effort reduction and Trawl take reduction research plan /Sea Turtle Strategy; improved habitat quality is expected</td>
</tr>
</tbody>
</table>
8.5 **RESOURCES, ECOSYSTEMS, AND HUMAN COMMUNITIES IDENTIFIED IN SCOPING IN TERMS OF THEIR RESPONSE TO CHANGE AND CAPACITY TO WITHSTAND STRESSES**

See 8.6, below.

8.6 **STRESSES AFFECTING THE RESOURCES, ECOSYSTEMS, AND HUMAN COMMUNITIES AND THEIR RELATION TO REGULATORY THRESHOLDS**

CEQ Steps 5 and 6 were accomplished either explicitly or implicitly in this document for each VEC in Section 6.0. It is suggested that the reader refer to the appropriate subsections to obtain details regarding this information.

In terms of stresses affecting fishing businesses, the Council has been conducting a visioning exercise and receiving much input from stakeholders. For MSB participants, 3 common themes were 1) The price of fuel has made profitable fishing difficult and 2) a sequential limiting of fishermen’s ability to switch from a less abundant to a more abundant species has bade profitable fishing difficult and exacerbated stock size swings, and 3) It is not so much any one regulation that puts fishermen out of business so much as the every growing compendium of regulations.
Table 77. Summary of information related to CEQ steps 5 and 6 that were addressed in Section 6.0.

<table>
<thead>
<tr>
<th>VEC</th>
<th>CEQ Step 5 (Response to change and ability to withstand stress – i.e., significance criteria)</th>
<th>CEQ Step 6 (Stresses affecting the resources)</th>
</tr>
</thead>
</table>
| Managed Resource | • Biomass drops below threshold (e.g., \(\frac{1}{2} \) of the biomass associated with MSY)
 • Fishing mortality exceeds threshold (these thresholds are defined for each managed resource in Section 6.1) | • Directed harvest
 • Discarding
 • Non-fishing activities |
| Non-target species | • Largely unquantifiable, but implementation of development of omnibus SBRM FMP should improve. | • Encounters with fishing gear
 • Non-fishing activities |
| Habitat | See EFH overlap analysis of Amendment 9, Section 6.3.4.1 | • Encounters with fishing gear
 • Non-fishing activities |
| Protected Resources | • Marine mammals - mortalities exceed potential biological removal which is defined for each species in Section 6.4.
 • Sea Turtles – nest counts, or estimated number of nesting females below target levels | • Encounters with fishing gear
 • Non-fishing activities |
| Human Communities | In general, the significance of impacts is measured by the potential for revenue loss. The standards established under E.O. 12866 or the Regulatory Flexibility Act may be candidates. | • Short term: revenue losses from changes in current fishing practices (e.g., gear modifications, area closures).
 • Short term and long term: revenue losses from resource depletion |
For the purposes of providing a conceptual context for this discussion of the affect the human environment, some general categories of the environmental influences on the VECs are provided in Figure 70. Most of the time, influences of actions on the population size of a managed resource can, by and large, be extended to populations of non-target species or protected species, and vice versa, especially with regard to increases and decreases in fishing effort. The effects of actions on habitat quality can come from a wide variety of fishing and non-fishing activities. In turn, habitat quality factors into the condition of the managed resource, non-target species, and protected resource VECs.

The condition of the human communities VEC is generally associated with increases and decreases in revenue from fishing operations. Operating costs tend to increase when availability of the managed resource decreases either through scarcity or through regulatory restrictions on harvest. The availability of the managed resource also effects competition among fishing entities for resources and consumer demand. These factors influence product price which feeds back to the economic and social well-being of the human communities.

Optimizing the future condition of a given VEC can have offsetting impacts on other VECs. For example, if updating EFH designations led to future gear restricted areas, closing areas to bottom otter trawling would directly improve habitat quality, and be expected to indirectly improve the conditions of managed resources, non-target species, and protected resources. This action, however, would negatively impact human communities dependent on revenue from otter trawling in that area, at least in the short term. Additionally, the indirect benefits to managed resources, non-target species, and protected resources may be localized, and increased bottom trawl effort in other areas may offset these benefits to some degree.
Figure 70. Examples of environmental sources of positive impacts (up arrows) and negative impacts (down arrows) for the five VECs.
8.7 **Baseline Condition for the Resources, Ecosystems, and Human Communities**

The CEQ’s step 7 calls for a characterization of the baseline conditions for the VECs. For the purposes of this CEA, the baseline condition is considered as the present condition of the VECs plus the combined effects of the past, present and reasonably foreseeable future actions. **Table 78** summarizes the added effects of the condition of the VECs (i.e., status/trends/stresses from Section 6 and **Table 77**) and the sum effect of the past, present and reasonably foreseeable future actions (from Table 78). The resulting CEA baseline for each VEC is exhibited in the last column (shaded). In general, only qualitative metrics are available for the VECs. For managed species, the baseline condition is uncertain since the status of all managed species is currently unknown but it is likely positive given the continued fisheries that target and catch the managed species. For non-target species, the constraints of data quality preclude a quantitative baseline. The conditions of the habitat and human communities VECS are complex and varied. As such, the reader should refer to the characterizations given in Sections 6.3 and 6.5, respectively. For protected resources the baseline is negative in the short run given continued interaction but should be positive in the long run as additional mitigations are implemented. As mentioned above, this CEA Baseline is then used to assess cumulative effects of the proposed management actions.

THIS SPACE INTENTIONALLY LEFT BLANK
Table 78. CEA baseline conditions of the VECs.

<table>
<thead>
<tr>
<th>VEC</th>
<th>Status/Trends/Stresses</th>
<th>Combined Effects of Past, Present Reasonably Foreseeable Future Actions (Table 76)</th>
<th>Combined CEA Baseline Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managed Resource</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atl. Mackerel</td>
<td>Unknown; landings variable</td>
<td>Uncertain since status of all species is currently unknown but likely positive given continued fisheries.</td>
<td>Uncertain since the status of all species is currently unknown but likely positive given continued fisheries exist.</td>
</tr>
<tr>
<td>Illex</td>
<td>Unknown; landings variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>longfin squid</td>
<td>Unknown; landings variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butterfish</td>
<td>Unknown; landings constrained by regulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-target Species
(principle species listed in section 6.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quantitative characterization of discards in MSB fisheries is poor to unknown; longfin squid fishery continues to account for large proportion of discards observed in NEFOP for several species including butterfish</td>
<td>Negative in short term discards will continue until reduction measures are implemented; Long term positive Amendment 10 measures would benefit other species, improved discards accounting, improved habitat quality</td>
<td>Negative in short term Increased discard rates will continue until reduction measures are implemented Positive in long term continued discards minimization should improve discards accounting and/or reduce discards</td>
</tr>
<tr>
<td>Habitat</td>
<td>Complex and variable - See Section 6.3.4.1 of Amendment 9; Non-fishing activities had historically negative but site-specific effects on habitat quality; Mouth of Hudson Canyon/Tilefish Habitat Area of Particular Concern among the areas most ecologically sensitive</td>
<td>Positive reduced habitat disturbance by fishing gear</td>
<td>Positive - reduced habitat disturbance by fishing gear and non-fishing actions</td>
</tr>
<tr>
<td>Protected Resources</td>
<td>Common dolphin</td>
<td>Unknown status, but takes are below Potential Biological Removal; taken by longfin squid, mackerel and other fisheries;</td>
<td>Negative or somewhat less negative than past in short term until Trawl take reduction research plan is implemented, improved habitat quality</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>White-sided dolphin</td>
<td>Unknown status, but takes are below Potential Biological Removal; historically taken by foreign mackerel vessels;</td>
<td>Long term positive reduced gear encounters through effort reduction and Trawl take reduction research plan /Sea Turtle Strategy; improved habitat quality are expected</td>
<td></td>
</tr>
<tr>
<td>Pilot whales</td>
<td>Unknown status, but takes are below Potential Biological Removal; taken by Illex and longfin squid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leatherback sea turtle</td>
<td>ESA classification: Endangered, number of nesting females below sustainable level; taken by longfin squid trawl</td>
<td>Negative or low negative in short term -- Until Trawl take reduction research plan is implemented</td>
<td></td>
</tr>
<tr>
<td>Loggerhead sea turtle</td>
<td>ESA classification: Threatened, nest counts (~6,200 in 1998) below goal (12,800); taken by Illex and longfin squid trawl</td>
<td>Positive – reduced gear encounters through effort reduction and Trawl take reduction research plan, Sea Turtle Strategy; improved habitat quality</td>
<td></td>
</tr>
<tr>
<td>Human Communities</td>
<td>Complex and variable - See Section 6.5</td>
<td>Positive - Long-term sustainable resources should support viable communities and economies</td>
<td></td>
</tr>
</tbody>
</table>

The following sections elaborate on each CEA Baseline:

Managed Resource Impacts CEA Baseline: Since the current status of the managed resources is unknown, the CEA Baseline is uncertain but probably positive given the stocks continue to support fisheries although landings can be highly variable. **Bottom Line:** Uncertain but probably positive.
Non-target Species Impacts CEA Baseline: Fishery encounters with non-target species (6.2), and the subsequent discards mortality remains a substantial fishery management problem. At present, the nature and extent of non-target species discarding by the MSB fisheries, as well as many others operating in the U.S. Atlantic remains difficult to characterize. Given impending catch reduction management measures, the CEA baseline is negative in the short run as high catch rates and discards (especially in the longfin squid fishery) are likely still occurring but positive in the long run as management measures are implemented to reduce non-target catch. As mentioned above, non-fishing effects, although potentially negative to all fish species, are likely not exerting much negative effects on non-target species, due to the small scale of the habitat perturbation relative to the populations at large. **Bottom Line: Still negative in short run but expected positive in long run.**

Habitat Impacts CEA Baseline: For habitat, the summary effects of past and present actions assessed above in Section 8.4 were considered to be positive. Effort reductions and/or gear modifications have reduced the negative impacts on this VEC that results from fishing activities. Again, although the negative effects of past and present actions associated with non-fishing activities (Table 75) may have increased negative effects, it is likely that those actions were minor due to the limited scale of the habitat impact compared with the populations at large. Considering fishing effort over the next 5 years will likely be reduced, a resultant positive impact on habitat of “other” actions is anticipated. **Bottom Line: Positive due to reduced effort and resulting reduction in habitat impacts.**

Protected Resource Impacts CEA Baseline: For the protected species affected by this Amendment (listed in Section 6.4), the summary effects of the “other” past and present actions assessed above were considered to be negative in the short term but positive in the long term due to future effort reduction or gear modifications (gear modifications lessen the negative impact of a given level of effort). Future actions that would directly reduce the mortality of protected resources from encounters with MSB fisheries include the implementation of the Atlantic Trawl Gear Take Reduction Plan and the Strategy for Sea Turtle Conservation for the Atlantic Ocean and the Gulf of Mexico Fisheries. These actions and the current protection under MMPA and ESA are expected to result in positive cumulative impacts for these protected resources. **Bottom Line: Negative in short term but positive due to effort reduction and other efforts to reduce gear interactions.**

Human Communities Impacts CEA Baseline: The net effect of past and present “other” actions is considered to be positive in that the fisheries managed under the MSB FMP currently support viable domestic and international market demand. While some short-term economic costs have been associated with effort reductions and gear modifications (see Table 75), economic returns have generally been positive and as such, have tended to make a positive contribution to the communities associated with harvest of these species. In the short-term future (i.e., within the temporal scope of this CEA), costs may occur. This negative impact is expected to be the byproduct of an adjustment to the improved management of the natural resources. In the longer term, positive impacts on human communities should come about as sustainability of natural resources is attained. **Bottom Line: Uncertain but probably positive in short run and should be positive in the long run.**
8.8 Cause-and-effect Relationships Between Human Activities and Resources, Ecosystems, and Human Communities

CEQ’s step 8 has been accomplished through the analyses of impacts presented in Section 7.0, as well as the summary of past, present, and reasonably foreseeable future actions presented in Table 75, and the relationships between the VECs illustrated in Figure 70 and its accompanying text.

8.9 Magnitude and Significance of Cumulative Effects

According to CEQ guidance, determining the magnitude of the cumulative effects consists of determining the separate effects of past actions, present actions, the proposed action (and reasonable alternatives), and other future actions. Once that is done, cumulative effects can be described. The significance of the effects is related to the magnitude, but also takes into account context and distribution. Table 75 in Section 8.4 lists the effects of individual past, present, and future actions and is organized in chronological order so that review of that table will assist the reader in understanding the conclusions presented below regarding the summary effects of these separate actions. Note that fishery-related activities consist almost entirely of positive effects (with the exception of some short term negative effects on human communities) while non-fishing activities are generally associated with negative effects. This is not to say that some aspects of the various VECs are not experiencing negative impacts, but rather that when taken as a whole and compared to the level of unsustainable effort that existed prior to and just after the fishery came under management control, the overall long-term trend is positive. The basis for this general outcome is explained in the text provided in Section 8.4. Table 78 and associated text describes the summary effects of the past, present, and future actions on the VECs.

Summary Incremental Impacts of the Proposed Actions

The impacts of the proposed actions are described in Section 7 and summarized in the executive summary (see also table 8). Since the impact of every alternative on every VEC is described in those sections, they are not repeated here. The incremental impacts of the preferred alternatives is summarized in Section 7.9.

Summary Cumulative Effects of the Proposed Actions

It is expected that the overall long-term cumulative effects should be positive for all VECs. This is because, barring some unexpected natural or human-induced catastrophe, the regulatory atmosphere within which Federal fishery management operates requires that management actions be taken in a manner that will optimize the conditions of resources, habitat, and human communities. Consistent with NEPA, the MSA requires that management actions be taken only after consideration of impacts to the biological, physical, economic, and social dimensions of the human environment. This document functions to identify the likely outcomes of various management alternatives. Identification of alternatives that would compromise resource sustainability should make implementation of those alternatives unlikely. With this in mind, the
expected likely cumulative impacts for the VECs are described below. As described above, the preferred alternatives are focused on better monitoring of directed and non-tageted catch, as well as control of catch of river herrings and shads.

Cumulative Managed Resources

The CEA baseline for managed resources is uncertain but probably positive (Table 78). Information about these stocks is likely to remain highly uncertain given their difficult-to-assess life history and the limited resources of NMFS to assess their stock status in near real time. However, the provisions recommended in this amendment should maintain or improve upon the baseline by improving monitoring and reducing effort. The past and present impacts, combined with the preferred alternatives and future actions are expected to continue rebuilding as necessary and strive to maintain sustainable stocks, should continue to yield positive impacts to the managed resources in the long term.

Cumulative Non-target Species Impacts:

The CEA baseline for non-target species resources is negative in the short run but expected to be positive in the long run (Table 78). The provisions recommended in this amendment, by improving monitoring and reducing effort, should contribute to positive effects on this VEC’s cumulative impacts in the future. However, there are still other non-target species interactions to potentially address so cumulative impacts will still probably be negative in the short term. The past and present impacts, combined with the preferred alternatives and future actions which are expected to continue attempts to minimize impacts to non-target species, should continue to eliminate negative impacts to non-target species and produce a neutral to low positive cumulative impact in the future.

Cumulative Habitat Impacts:

The CEA baseline for habitat is positive (Table 78). Nothing in the amendment is expected to increase effort (and therefore habitat impacts), so cumulative impacts for habitat would be expected to continue to be positive. The past and present impacts, combined with the preferred alternatives and future actions should continue to have a positive cumulative impact on habitat.

Cumulative Protected Resource Impacts:

The CEA baseline for protected resources is negative in the short term but positive due to effort reduction and other efforts to reduce gear interactions (Table 78). While some effort reduction could occur as a result of the alternatives in this document, since the alternatives are not designed specifically to reduce protected species impacts, cumulative protected resource impacts are likely the same as the baseline, negative in the short run but positive in the long run. The past and present impacts, combined with the preferred alternatives will continue to produce a low negative impact until further reduced gear encounters are realized.
Cumulative Human Communities Impacts:

The CEA baseline for human communities is probably positive in short run and should be positive in the long run (Table 78). The monitoring, at-sea observing, and discards reduction alternatives preferred in this document should reinforce effective conservation of the managed and non-target species leading to improved management of these natural resources which would continue to support positive long term cumulative impacts and continue to support viable domestic fisheries and revenues related to these fisheries. The past and present impacts, combined with the preferred alternatives and future actions should produce a positive cumulative impact to human communities in the future.
9.0 CONSISTENCY WITH THE MAGNUSON-STEVENS FISHERY CONSERVATION AND MANAGEMENT ACT

9.1 NATIONAL STANDARDS

Section 301 of the Magnuson-Stevens Fishery Conservation and Management Act requires that fishery management plans (FMPs) contain conservation and management measures that are consistent with the ten National Standards:

In General. – Any fishery management plan prepared, and any regulation promulgated to implement any such plan, pursuant to this title shall be consistent with the...national standards for fishery conservation and management.

(1) Conservation and management measures shall prevent overfishing while achieving, on a continuing basis, the optimum yield from each fishery for the United States fishing industry.

The management measures proposed in Amendment 14 were developed by the Council to achieve the goals and objectives of the MSB fishery management plan, the primary goal of which is to manage the fishery at long-term sustainable levels by enhancing the probability of successful recruitment to the fishery. Consistent with the MSA requirements for ACLs and AMs, the mackerel and butterfish fisheries are managed through an overall ACL (that accounts for scientific and management uncertainties) and squid specifications are set based on the recommendations from the Council's SSC (squid, being sub-annual stocks are not subject to ACL/AM requirements). While much uncertainty exists regarding the productivity of the MSB stocks, the Council's risk policy and ABC control rules are designed to obtain optimum yield in the long run. None of the measures proposed in this amendment are expected to affect this determination. Amendment 14 was developed primarily to enhance catch monitoring for the mackerel and longfin squid fisheries. As discussed throughout the analysis in this document, improving catch monitoring may lead to better data for the MSB fisheries. The measures proposed should therefore advance the goals and objectives of the FMP and improve the Council's ability to manage the resource consistent with National Standard 1.

(2) Conservation and management measures shall be based upon the best scientific information available.

The data sources considered and evaluated during the development of this Amendment include, but are not limited to: permit data, landings data from vessel trip reports, information from resource trawl surveys, sea sampling (observer) data, data from the dealer weighout purchase reports, peer-reviewed assessments and original literature, and descriptive information provided by fishery participants and the public. To the best of the Council's knowledge these data sources constitute the best scientific information available. All analyses based on these data have been reviewed at multiple steps by NMFS and the public.
(3) To the extent practicable, an individual stock of fish shall be managed as a unit throughout its range, and interrelated stocks of fish shall be managed as a unit or in close coordination.

The MSB FMP addresses management of the MSB stocks throughout the range of the species in U.S. waters, in accordance with the jurisdiction of U.S. law. The development of Amendment 14 was also closely coordinated with the New England Fishery Management Council and the ASMFC, due to the overlap and interaction between the Atlantic herring and mackerel fisheries, as well as interactions with RH/S, which are managed by the ASMFC.

(4) Conservation and management measures shall not discriminate between residents of different States. If it becomes necessary to allocate or assign fishing privileges among various United States fishermen, such allocation shall be (A) fair and equitable to all such fishermen; (B) reasonably calculated to promote conservation; and (C) carried out in such manner that no particular individual, corporation, or other entity acquires an excessive share of such privileges.

The community level impacts of the MSB fisheries are described in Section 6 of this document and human community impacts of the proposed measures are described in Section 7. The measures in Amendment 14 are intended to be applied regardless of location, and fishing for MSB species often takes place far from a vessel's homeport. While the measures do not discriminate between permit holders from different States, they may result in variable impacts across permit holders/fishery participants given the variability of the MSB resources. The proposed management measures are not expected to otherwise discriminate between residents of different States. This action does not allocate or assign fishing privileges among various fishermen.

(5) Conservation and management measures shall, where practicable, consider efficiency in the utilization of fishery resources; except that no such measure shall have economic allocation as its sole purpose.

This amendment focuses on improving catch monitoring and controlling RH/S catch in the MSB fisheries. While these goals may impose certain costs on fishery participants (see Section 7), the proposed measures should enhance efficient long-term management of fishery resources. No measures are proposed regarding economic allocation.

(6) Conservation and management measures shall take into account and allow for variations among, and contingencies in, fisheries, fishery resources, and catches.

Changes in fisheries occur continuously, both as the result of human activity (for example, new technologies or shifting market demand) and natural variation (for example, oceanographic perturbations). Recent stock assessments have suggested that the MSB stocks are all likely particularly sensitive to environmental variables. In order to provide the greatest flexibility possible for future management decisions, the FMP includes a framework adjustment mechanism with an extensive list of possible framework adjustment measures that can be used to quickly adjust the plan as conditions in the fishery change. This amendment builds on that process by adding items to the list of measures that can be implemented through a framework adjustment (mortality caps and hotspot area restrictions to address non-target catches).
(7) Conservation and management measures shall, where practicable, minimize costs and avoid unnecessary duplication.

As always, the Council considered the costs and benefits associated with the management measures proposed in this amendment when developing this action. Any costs incurred as a result of the measures proposed in this amendment are considered to be necessary in order to achieve the stated purposes (which are consistent with the MSA), and are viewed to be outweighed by the benefits of taking the management action. The management measures proposed in this amendment are not duplicative and were developed in close coordination with NMFS, the New England Fishery Management Council, the Atlantic States Marine Fisheries Commission (ASMFC), U.S. F & W Service, and other interested entities and agencies to minimize duplicity. Public comments regarding the costs of potential measures were also carefully considered prior to taking action.

(8) Conservation and management measures shall, consistent with the conservation requirements of this Act (including the prevention of overfishing and rebuilding of overfished stocks), take into account the importance of fishery resources to fishing communities in order to (A) provide for the sustained participation of such communities, and (B) to the extent practicable, minimize adverse economic impacts on such communities.

The community level impacts of the MSB fisheries are described in Section 6 of this document and human community impacts of the proposed measures are described in Section 7. Any costs incurred by fishery participants as a result of the measures proposed in this amendment are considered to be necessary in order to achieve the stated purposes (which are consistent with the MSA), and are viewed to be outweighed by the benefits of taking the management action. Overall, the proposed action is not expected to jeopardize the sustained participation of fishing communities that have depended on the MSB resources. The Council carefully considered the importance of the MSB resources to affected fishery-related businesses and communities when developing the management measures proposed in Amendment 14. The long-term impacts of improving catch monitoring should also be positive for fishery-related businesses and communities. During final decision-making, the long-term positive impacts of improving catch monitoring were weighed against the negative impacts of implementing the catch monitoring program (and other measures proposed in Amendment 14) on fishery-related businesses and communities. Some of the measures proposed in Amendment 14 are likely to impose a cost on the industry, and the impacts on fishery-related businesses and communities are therefore likely to be negative, at least in the short term. The measures that are most likely to result in negative impacts on fishery-related businesses and communities are the proposed requirements for industry funded observer coverage and potential closures related to RH/S mortality caps, but they may also result in the greatest benefits for RH/S conservation.
(9) Conservation and management measures shall, to the extent practicable, (A) minimize bycatch and (B) to the extent bycatch cannot be avoided, minimize the mortality of such bycatch.

The MSA defines “bycatch” as fish that are harvested in a fishery, but are not retained (sold, transferred, or kept for personal use), including economic discards and regulatory discards. Incidentally landed catch are fish, other than the target species, that are harvested while fishing for a target species and retained and/or sold. The proposed measures should improve catch monitoring, which could help implement effective bycatch reduction measures. The RH/S mortality caps also create incentives for fishermen to avoid these non-target species.

(10) Conservation and management measures shall, to the extent practicable, promote the safety of human life at sea.

Fishing is a dangerous occupation; participants must constantly balance the risks imposed by weather against the economic benefits. According to the National Standard guidelines, the safety of the fishing vessel and the protection from injury of persons aboard the vessel are considered the same as “safety of human life at sea. The safety of a vessel and the people aboard is ultimately the responsibility of the master of that vessel. Each master makes many decisions about vessel maintenance and loading and about the capabilities of the vessel and crew to operate safely in a variety of weather and sea conditions. This national standard does not replace the judgment or relieve the responsibility of the vessel master related to vessel safety. The Council, through consultation with the USCG, NMFS, and fishery participants, carefully weighed potential safety at sea considerations before making recommendations.

Anti-slippage measures, which potentially require trip termination due to slippage events, could potentially cause vessel masters to take fish aboard in dangerous conditions when they would otherwise not have done so. However, the final management measures proposed to address net slippage specifically authorize exceptions for slippage events in instances when vessel safety is a concern (as well as instances when gear is damaged or dogfish have overloaded a net).

9.2 Other Required Provisions of the Magnuson-Stevens Act

Section 303 of the MSA contains 15 additional required provisions for FMPs, which are listed below. Nothing in this action is expected to contravene any of these required provisions.

(1) contain the conservation and management measures, applicable to foreign fishing and fishing by vessels of the United States, which are-- (A) necessary and appropriate for the conservation and management of the fishery to prevent overfishing and rebuild overfished stocks, and to protect, restore, and promote the long-term health and stability of the fishery; (B) described in this subsection or subsection (b), or both; and (C) consistent with the National Standards, the other provisions of this Act, regulations implementing recommendations by international organizations in which the United States participates (including but not limited to closed areas, quotas, and size limits), and any other applicable law;
(2) contain a description of the fishery, including, but not limited to, the number of vessels involved, the type and quantity of fishing gear used, the species of fish involved and their location, the cost likely to be incurred in management, actual and potential revenues from the fishery, any recreational interest in the fishery, and the nature and extent of foreign fishing and Indian treaty fishing rights, if any;

(3) assess and specify the present and probable future condition of, and the maximum sustainable yield and optimum yield from, the fishery, and include a summary of the information utilized in making such specification;

(4) assess and specify-- (A) the capacity and the extent to which fishing vessels of the United States, on an annual basis, will harvest the optimum yield specified under paragraph (3); (B) the portion of such optimum yield which, on an annual basis, will not be harvested by fishing vessels of the United States and can be made available for foreign fishing; and (C) the capacity and extent to which United States fish processors, on an annual basis, will process that portion of such optimum yield that will be harvested by fishing vessels of the United States;

(5) specify the pertinent data which shall be submitted to the Secretary with respect to commercial, recreational, and charter fishing in the fishery, including, but not limited to, information regarding the type and quantity of fishing gear used, catch by species in numbers of fish or weight thereof, areas in which fishing was engaged in, time of fishing, number of hauls, and the estimated processing capacity of, and the actual processing capacity utilized by, United States fish processors;

(6) consider and provide for temporary adjustments, after consultation with the Coast Guard and persons utilizing the fishery, regarding access to the fishery for vessels otherwise prevented from harvesting because of weather or other ocean conditions affecting the safe conduct of the fishery; except that the adjustment shall not adversely affect conservation efforts in other fisheries or discriminate among participants in the affected fishery;

(7) describe and identify essential fish habitat for the fishery based on the guidelines established by the Secretary under section 305(b)(1)(A), minimize to the extent practicable adverse effects on such habitat caused by fishing, and identify other actions to encourage the conservation and enhancement of such habitat;
Section 6.3 of this document describes and identifies EFH in order to satisfy this provision.

(8) in the case of a fishery management plan that, after January 1, 1991, is submitted to the Secretary for review under section 304(a) (including any plan for which an amendment is submitted to the Secretary for such review) or is prepared by the Secretary, assess and specify the nature and extent of scientific data which is needed for effective implementation of the plan;

The preparation of this amendment included a review of the scientific data that were available to assess the impacts of all alternatives in this amendment.

(9) include a fishery impact statement for the plan or amendment (in the case of a plan or amendment thereto submitted to or prepared by the Secretary after October 1, 1990) which shall assess, specify, and describe the likely effects, if any, of the conservation and management measures on-- (A) participants in the fisheries and fishing communities affected by the plan or amendment; and (B) participants in the fisheries conducted in adjacent areas under the authority of another Council, after consultation with such Council and representatives of those participants;

Section 7.5 of this document provides an extensive assessment of the likely effects of the actions proposed in this amendment on fishery participants and communities.

(10) specify objective and measurable criteria for identifying when the fishery to which the plan applies is overfished (with an analysis of how the criteria were determined and the relationship of the criteria to the reproductive potential of stocks of fish in that fishery) and, in the case of a fishery which the Council or the Secretary has determined is approaching an overfished condition or is overfished, contain conservation and management measures to prevent overfishing or end overfishing and rebuild the fishery;

(11) establish a standardized reporting methodology to assess the amount and type of bycatch occurring in the fishery, and include conservation and management measures that, to the extent practicable and in the following priority-- (A) minimize bycatch; and (B) minimize the mortality of bycatch which cannot be avoided;

(12) assess the type and amount of fish caught and released alive during recreational fishing under catch and release fishery management programs and the mortality of such fish, and include conservation and management measures that, to the extent practicable, minimize mortality and ensure the extended survival of such fish;
(13) include a description of the commercial, recreational, and charter fishing sectors which participate in the fishery and, to the extent practicable, quantify trends in landings of the managed fishery resource by the commercial, recreational, and charter fishing sectors;

(14) to the extent that rebuilding plans or other conservation and management measures which reduce the overall harvest in a fishery are necessary, allocate any harvest restrictions or recovery benefits fairly and equitably among the commercial, recreational, and charter fishing sectors in the fishery.

(15) establish a mechanism for specifying annual catch limits in the plan (including a multiyear plan), implementing regulations, or annual specifications, at a level such that overfishing does not occur in the fishery, including measures to ensure accountability.

9.3 Essential Fish Habitat Assessment

The MSA / EFH Provisions (50 CFR 600.920(e)(3)) require that any Federal action which may adversely affect EFH must include a written assessment of the effects of that action on EFH. As describes in Section 7, there are not expected to be adverse impacts on EFH.
10.0 Relationship to Other Applicable Law

10.1 National Environmental Policy Act (NEPA)

10.1.1 Introduction

In order to consider a full range of alternatives related to this Amendment, the Council determined that the development of an EIS would be necessary to fulfill the requirements of NEPA. NEPA requires preparation of an Environmental Impact Statement (EIS) for major Federal actions that significantly affect the quality of the environment. The Council published a Notice of Intent to prepare this Amendment and the EIS in the Federal Register on June 9, 2010.

The primary purposes of Amendment 14 to the Atlantic Mackerel, Squid, and Butterfish (MSB) Fishery Management Plan (FMP) are to:

Purpose A: "Implement Effective RH/S Catch Monitoring" – Purpose A is to consider alternatives that would implement monitoring programs for the Mackerel, Squid, and Butterfish (MSB) fisheries that are sensitive enough and robust enough to the spatial and temporal variability of RH/S distributions so that good RH/S catch estimates can be generated. The Magnuson-Stevens Fishery Conservation and Management Act (MSA) requires Councils “to specify the pertinent data which shall be submitted to the Secretary with respect to…fishing…in the fishery” (Section 303(a)(5)) and Section 8 under discretionary fishery management plan provisions allows implementation of observer requirements.

Purpose B: "Reduce RH/S Catch" – Purpose B is to consider alternatives to reduce catch of RH/S in the MSB fisheries. The MSA requires Councils to minimize discards to the extent practicable (Section 301 – National Standard 9) and provides discretionary authority to “include management measures in the plan to conserve…non-target species…considering the variety of ecological factors affecting fishery populations” (Section 303(b)(12)). Because information on how much RH/S catch might be sustainable is lacking, it is not currently possible to quantify the impact on RH/S stocks of any catch reductions that may occur but such catch reductions would be likely to have a positive impact to some degree.

Purpose C: "Consider RH/S NS1 Stock Issues" – Purpose C was to consider alternatives that would bring RH/S into the MSB plan as a managed stock in terms of Council management responsibilities, including annual catch limits and accountability measures, in order to improve overall RH/S management and conservation. In the DEIS, Alternative Set 9 considered whether to add RH/S as stocks in the fishery. Since the Council chose no action for that entire alternative set, and also has begun Amendment 15 to more fully consider the issue, the stock in the fishery issue has been moved into the “considered but rejected” section, 2.4 and is summarized there.

Potential measures being considered are detailed in Section 5 and summarized below:
Alternatives Related to Purpose A: Implement Effective RH/S Catch Monitoring

- **Alternative Set 1**: Additional Vessel Reporting Measures
- **Alternative Set 2**: Additional Dealer Reporting Measures
- **Alternative Set 3**: Additional At-Sea Observation Optimization Measures
- **Alternative Set 4**: Port-side and Other Sampling/Monitoring Measures
- **Alternative Set 5**: At-Sea Observer Coverage Requirements

Alternatives Related to Purpose B: Reduce RH/S Catch

- **Alternative Set 6**: Mortality Caps
- **Alternative Set 7**: Restrictions in areas of high RH/S catch
- **Alternative Set 8**: Hotspot Restrictions

10.1.2 Development of EIS

The Council began the formal development of Amendment 14's EIS in 2010 following the publication of the supplemental Notice of Intent to prepare an EIS. The Council held a number of meetings of its Squid, Mackerel, and Butterfish (MSB) Committee, and Amendment 14's Fishery Management Action Team (FMAT). All of these meetings, as well as several related Council meetings, were open to the public.

10.1.3 List of Preparers and EIS Distribution List

This document was prepared by the Mid-Atlantic Fishery Management Council staff and other members of the Amendment 14 Fishery Management Action Team. Copies of this document and other associated documents are available from Dr. Christopher M. Moore, 114 Executive Director, Mid-Atlantic Fishery Management Council, Suite 201, 800 North State Street, Dover, DE 19901 or online at www.mafmc.org, in the section for MSB fisheries.

MSB Amendment 14 Fishery Management Action Team:

Jason Didden (MAFMC)
Aja Szumylo (NMFS)
Katherine Richardson (NMFS)
Dan Marone (NMFS)
Kiersten Curti (NMFS)
Lisa Hendrickson (NMFS)
Joel MacDonald & Denise Desautels (NOAA General Counsel)
David Stevenson (NMFS)
Andrew Kitts (NMFS)
Kate Taylor (ASMFC)
MAFMC MSB Committee (Past and Present):

Howard King, Chairman
Erling Berg, Vice-Chairman
Lee Anderson
Bob Beal (ASMFC)
Peter deFur
Tony DiLernia
Jim Gilmore
Pete Himchak
Stephen Linhard
Mike Luisi
John McMurray
Dave Miko
Laurie Nolan
Preston Pate
Steven Schafer
Vince O'Shea
Leroy Young
Christopher Zeman
Mary Beth Tooley (NEFMC)
David Pierce (NEFMC)

EIS Distribution List

United States Environmental Protection Agency (U.S. EPA), Region 1
Betsy Higgins
U.S. EPA New England
Five Post Office Square, Suite 100
Boston, MA 02109-3912

U.S.EPA, Region 2
Grace Musumeci
290 Broadway, 25th Floor
New York, NY 10007

U.S. EPA, Region 3
Bill Arguto
1650 Arch Street
Philadelphia, PA 19106
215.814.3367
arguto.william@epa.gov

U.S. EPA, Region 4
Chris Hoberg
District Commander
First Coast Guard District
408 Atlantic Avenue
Boston, MA 02210

William Gibbons-Fly, Director
Office of Marine Conservation
Department of State
2201 "C" Street, N.W.
Washington, DC 20520

Timothy J. Ragan, Ph.D.
Acting Executive Director
Marine Mammal Commission
4340 East-West Highway
Bethesda, MD 20814

Willie R. Taylor
Office of Environmental Affairs
Department of Interior
1849 "C" Street, N.W.
Washington, DC 20520

NOAA Fisheries Service
Protected Species Division - angela.somma@noaa.gov
Office of Law Enforcement - dale.jones@noaa.gov
Sustainable Fisheries Division - galen.tromble@noaa.gov
10.2 **Marine Mammal Protection Act (MMPA)**

The MAFMC has reviewed the impacts of Amendment 14 on marine mammals and has concluded that the proposed management actions are consistent with the provisions of the MMPA, and will not alter existing measures to protect the species likely to inhabit the management unit. For further information on the potential impacts of the fishery and the proposed management action on marine mammals, see Section 7.4 of this document.

10.3 **Endangered Species Act (ESA)**

Section 7 of the ESA requires Federal agencies conducting, authorizing, or funding activities that affect threatened or endangered species to ensure that those effects do not jeopardize the continued existence of listed species. Formal consultation on the MSB fishery was last completed on October 29, 2010. The October 29, 2010, Biological Opinion concluded that the operation of the MSB fishery is not likely to jeopardize the continued existence of listed species. Since the Atlantic sturgeon DPSs have been listed as endangered and threatened under the ESA, the ESA Section 7 consultation for the MSB fisheries has been reinitiated, and additional evaluation will be included in the resulting Biological Opinion to describe any impacts of the fisheries on Atlantic sturgeon and define any measures needed to mitigate those impacts, if necessary. It is anticipated that any measures, terms and conditions included in an updated Biological Opinion will further reduce already low impacts to the species. NMFS found that the continued operation of these fisheries during the reinitiation period is not likely to jeopardize the continued existence of any Atlantic sturgeon DPS. This is based on the NMFS determination that the number of interactions with Atlantic sturgeon that may occur during this period is low and will only occur for a short period of time. Thus, this is not expected to increase the risk that the fisheries and associated research are jeopardizing any Atlantic sturgeon DPS.

10.4 **Coastal Zone Management Act**

Section 307(c)(1) of the Federal Coastal Zone Management Act of 1972 requires that all Federal activities that directly affect the coastal zone be consistent with approved state coastal zone management programs to the maximum extent practicable. Pursuant to the Coastal Zone Management Act regulations at 15 CFR 930.35, a negative determination may be made if there are no coastal effects and the subject action: (1) Is identified by a state agency on its list, as described in § 930.34(b), or through case-by-case monitoring of unlisted activities; or (2) which is the same as or is similar to activities for which consistency determinations have been prepared in the past; or (3) for which the Federal agency undertook a thorough consistency assessment and developed initial findings on the coastal effects of the activity. Accordingly, NMFS has determined that this action would have no effect on any coastal use or resources of any state. Letters documenting the NMFS negative determination, along with this document, will be sent to the coastal zone management program offices of the states of Maine, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, Delaware, Maryland, Virginia, North Carolina, South Carolina, Georgia, and Florida. A list of the specific state contacts and a copy of the letters will be made available upon request.
10.5 **Administrative Procedures Act**

Section 553 of the Administrative Procedure Act establishes procedural requirements applicable to informal rulemaking by Federal agencies. The purpose of these requirements is to ensure public access to the Federal rulemaking process, and to give the public adequate notice and opportunity for comment. At this time, the Council is not requesting any abridgement of the rulemaking process for this action.

10.6 **Information Quality Act**

Utility of Information Product

The proposed document includes: A description of the management issues, a description of the alternatives considered, and the reasons for selecting the management measures, to the extent that this has been done. These actions propose modifications to the existing FMP. These proposed modifications implement the FMP's conservation and management goals consistent with the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act) as well as all other existing applicable laws.

This proposed amendment was developed as part of a multi-stage process that involves review of the amendment document by affected members of the public. The public had the opportunity to review and comment on management measures at public hearings after the Council approved the public hearing document/DEIS. There will also be a comment period for the FEIS. The Federal Register notice that announces the proposed rule and the implementing regulations will be made available in printed publication and on the website for the Northeast Regional Office. The notice provides metric conversions for all measurements.

Integrity of Information Product

The information product meets the standards for integrity under the following types of documents:

Other/Discussion (e.g., Confidentiality of Statistics of the Magnuson-Stevens Fishery Conservation and Management Act; NOAA Administrative Order 216-100, Protection of Confidential Fisheries Statistics; 50 CFR 229.11, Confidentiality of information collected under the Marine Mammal Protection Act.)
Objectivity of Information Product

The category of information product that applies for this product is “Natural Resource Plans.”

In preparing documents which amend the FMP, the Council must comply with the requirements of the Magnuson-Stevens Act, the National Environmental Policy Act, the Regulatory Flexibility Act, the Administrative Procedure Act, the Paperwork Reduction Act, the Coastal Zone Management Act, the Endangered Species Act, the Marine Mammal Protection Act, the Data Quality Act, and Executive Orders 12630 (Property Rights), 12866 (Regulatory Planning), 13132 (Federalism), and 13158 (Marine Protected Areas).

This amendment was developed to comply with all applicable National Standards, including National Standard 2. National Standard 2 states that the FMP's conservation and management measures shall be based upon the best scientific information available. Despite current data limitations, the conservation and management measures proposed to be implemented under this amendment are based upon the best scientific information available. This information includes NMFS dealer weighout data for 2007, which was used to characterize the economic impacts of the management proposals. These data, as well as the NMFS Northeast Fisheries Observer Program (NEFOP) database, were used to characterize historic landings, species co-occurrence in the MSB catch, and discarding. The specialists who worked with these data are familiar with the most recent analytical techniques and with the available data and information relevant to the MSB fisheries. Marine Recreational Fisheries Statistical Survey data were used to characterize the recreational fishery for Atlantic mackerel (the only species managed under this FMP with a significant recreational component).

The policy choices (i.e., management measures) proposed to be implemented by this amendment document are supported by the available scientific information and, in cases where information was unavailable, proxy reference points are based on observed trends in survey data. The management measures considered via this document are being designed to meet the conservation goals and objectives of the FMP, and prevent overfishing and rebuild overfished resources, while maintaining sustainable levels of fishing effort to ensure a minimal impact on fishing communities.

The supporting materials and analyses used to develop the measures in the amendment are contained in the amendment document and to some degree in previous amendments and/or FMPs as specified in this document.

The review process for this amendment involves the Mid-Atlantic Fishery Management Council, the Northeast Fisheries Science Center, the Northeast Regional Office, and NOAA Fisheries headquarters. The Center's technical review is conducted by senior level scientists with specialties in population dynamics, stock assessment methods, demersal resources, population biology, and the social sciences. The Council review process involves public meetings at which affected stakeholders have the opportunity to provide comments on the document. Review by staff at the Regional Office is conducted by those with expertise in fisheries management and policy, habitat conservation, protected species, and compliance with the applicable law. Final
approval of the amendment document and clearance of the rule is conducted by staff at NOAA Fisheries Headquarters, the Department of Commerce, and the U.S. Office of Management and Budget.

10.7 **PAPERWORK REDUCTION ACT**

The Paperwork Reduction Act concerns the collection of information. The intent of the Paperwork Reduction Act is to minimize the Federal paperwork burden for individuals, small businesses, state and local governments, and other persons as well as to maximize the usefulness of information collected by the Federal government. With significant changes to the catch monitoring program proposed for the MSB fisheries, Amendment 14 may contain new collection of information requirements subject to the Paperwork Reduction Act, including changes to vessel and dealer reporting requirements, notification requirements, and affidavit requirements, among other things (see Section 10.10.2). The Paperwork Reduction Act package prepared in support of this action and the information collection required by the proposed action, including forms and supporting statements, will be submitted when implementation action is taken on Amendment 14.

10.8 **IMPACTS RELATIVE TO FEDERALISM/E.O. 13132**

This amendment does not contain policies with federalism implications sufficient to warrant preparation of a federalism assessment under Executive Order 13132.
10.9 Regulatory Flexibility Act/E.O. 12866

10.9.1 Regulatory Impact Review and Initial Regulatory Flexibility Analysis

This section provides the analysis and conclusions to address the requirements of Executive Order 12866 and the Regulatory Flexibility Act. Since many of the requirements of these mandates duplicate those required under the Magnuson-Stevens Act and NEPA, this section contains references to other sections of this document. The following sections provide the basis for concluding that the proposed actions are not significant under E.O. 12866 and will not have a significant economic impact on a substantial number of small entities under the Regulatory Flexibility Act.

10.9.2 Description of Management Objectives

The goals and objectives of the management plan for the MSB resources are stated in Section 4.3 of this document. The proposed actions are consistent with, and do not modify those goals and objectives.

10.9.3 Description of the Fisheries

Section 6.1 of this document contains a detailed description of the fisheries managed under this FMP.
10.9.4 Statement of Problem/Need for Action

The purpose and need for this action were summarized in the Executive Summary, 10.1, and further described in Section 4.1 of this document.

10.9.5 Description of the Alternatives

The potential measures being considered were summarized in the Executive Summary, 10.1, and further described in Section 5 of this document.

10.9.6 Economic Analysis

The economic impacts of the alternatives in this amendment are discussed in Section 7.0 of this document.

10.9.7 Determination of Significance under E.O. 12866

NMFS Guidelines provide criteria to be used to evaluate whether a proposed action is significant. A significant regulatory action means any regulatory action that is likely to result in a rule that may:

1. Have an annual effect on the economy of $100 million or more, or adversely effect in a material way the economy, a sector of the economy, productivity, competition, jobs, the environment, public health or safety, or State, local or tribal governments or communities.

The proposed actions are not expected to have an effect on the economy in excess of $100 million because the mackerel and longfin squid fisheries, the two fisheries that are impacted by the proposed actions, have a combined value of about $20-$33 million dollars 2008-2010. It is expected that the group of alternatives that has been selected as preferred will achieve the desired RH/S monitoring and catch reduction goals in a practicable manner. In addition, costs incurred by the mackerel and longfin squid fisheries could be offset by gains made relative to RH/S conservation.

2. Create a serious inconsistency or otherwise interfere with an action taken or planned by another agency.

The proposed actions will not create a serious inconsistency with or otherwise interfere with an action taken or planned by another agency. No other agency has indicated that it plans an action that will interfere with the MSB fisheries in the EEZ.

3. Materially alter the budgetary impact of entitlements, grants, user fees, or loan programs or the rights and obligations of recipients thereof.
The proposed action will not materially alter the budgetary impact of entitlements, grants, user fees or loan programs, or the rights and obligations of their participants.

4. *Raise novel legal or policy issues arising out of legal mandates, the President’s priorities, or the principles set forth in the Executive Order.*

The considered actions do not raise novel legal or policy issues arising out of legal mandates, the President’s priorities, or the principles set forth in E.O. 12866. The considered actions have generally been considered in other fisheries managed by NMFS.

10.9.8 Initial Regulatory Flexibility Analysis

The following sections contain analyses of the effect of the proposed action on small entities. Under Section 603(b) of the Regulatory Flexibility Act, each initial regulatory flexibility analysis is required to address:

1. Reasons why the agency is considering the action,
2. The objectives and legal basis for the proposed rule,
3. The kind and number of small entities to which the proposed rule will apply,
4. The projected reporting, record-keeping and other compliance requirements of the proposed rule, and
5. All Federal rules that may duplicate, overlap, or conflict with the proposed rule.

10.9.9 Reasons for Considering the Action

The needs and purposes for action are described in Section 5 of this document.

10.9.10 Objectives and Legal Basis for the Action

Amendment 14 was developed in accordance with the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA) and the National Environmental Policy Act (NEPA), the former being the primary domestic legislation governing fisheries management in the U.S. Exclusive Economic Zone (EEZ). In 1996, Congress passed the Sustainable Fisheries Act (MSA), which amended and reauthorized the MSFCMA and included a new emphasis on precautionary fisheries management. New provisions mandated by the MSA require managers to end overfishing and rebuild overfished stocks within specified time frames, minimize discards and discard mortality to the extent practicable, and identify and protect essential fish habitat (EFH). This document presents and evaluates management alternatives and measures to achieve specific goals and objectives for the Atlantic mackerel, squid and butterfish fisheries (Section 4.0). The associated document was prepared by the Mid-Atlantic Fishery Management Council (Council) in consultation with the National Marine Fisheries Service (NMFS, NOAA Fisheries).
10.9.11 Description and Number of Small Entities to Which the Rule Applies

The Regulatory Flexibility Act requires the Federal rulemaker to examine the impacts of proposed and existing rules on small businesses, small organizations, and small governmental jurisdictions. In reviewing the potential impacts of proposed regulations, the agency must either certify that the rule will not, if promulgated, have a significant economic impact on a substantial number of small entities or prepare a final regulatory flexibility analysis. The Small Business Administration defines a small business in the commercial fishing sector as a firm with receipts (gross revenues) of up to $4.0 million. Party/charter small businesses are included in NAICS code 487210 and are defined as a firm with gross receipts of up to $7 million.

The measures in this amendment could affect any vessel holding an active Federal permit for Atlantic mackerel, longfin squid, Illex or butterfish, as well as vessels that fish for any one of these species in state waters. According to NMFS permit file data, in 2010, 2,201 commercial vessels possessed Atlantic mackerel permits, 351 vessels possessed longfin squid/butterfish moratorium permits, 76 vessels possessed Illex permits, 1904 vessels possessed incidental catch permits and 831 vessels possessed squid/mackerel/butterfish party/charter permits. In 2010 all of the relevant commercial vessels had revenues less than $4.0 million. While gross revenue data is not available for the party/charter sector, it is a reasonably safe presumption that almost all if not all of the party/charter vessels would qualify as a small business. Many vessels participate in more than one of these fisheries; therefore, permit numbers are not additive. The distribution of permitted and active vessels by state may be found in Section 6.

Since all permit holders may not actually land any of the four species, the more immediate impact of the considered measures may be felt by the commercial vessels that are actively participating in these fisheries (see active vessel tables in Section 6 above). An active participant was defined as being any vessel that reported having landed one or more pounds of any one of the four species in the Northeast dealer data during calendar year 2010, and there were 488 such vessels. Tables 30, 41, 51, and 61 provide the numbers of permitted and substantially active (greater than 1,000 pounds of a species) for mackerel, Illex, butterfish, and longfin respectively. NMFS weighout databases cover activity by unique vessels that hold a Federal permit of any kind and provides summary data for vessels that fish exclusively in state waters. This means that an active vessel may be a vessel that holds a valid Federal Atlantic mackerel, squid, or butterfish permit, a vessel that holds a valid Federal permit but no Atlantic mackerel, squid, or butterfish permit; a vessel that holds a Federal permit other than Atlantic mackerel, squid, or butterfish permit and fishes for those species exclusively in state waters; or may be a vessel that holds no Federal permit of any kind. Of the four possibilities the number of vessels in the latter two categories cannot be estimated because the dealer data provides only summary information for state waters vessels and because the vessels in the last category do not have to report landings.

Not all landings and revenues reported through the Federal dealer data can be attributed to a specific vessel. Vessels with no Federal permits are not subject to any Federal reporting requirements with which to corroborate the dealer reports. Thus, it is possible that some vessel activity cannot be tracked with the landings and revenue data that are available. Thus, these vessels cannot be included in the threshold analysis, unless each state were to report individual vessel activity through some additional reporting system - which currently does not exist. This
problem has two consequences for performing threshold analyses. First, the stated number of entities subject to the regulation is a lower bound estimate, since vessels that operate strictly within state waters and sell exclusively to non-Federally permitted dealers cannot be counted. Second, the portion of activity by these uncounted vessels may cause the estimated economic impacts to be over- or underestimated.

The effects of actions were analyzed by employing quantitative approaches to the extent possible. In the current analysis, effects on profitability associated with the management measures should be evaluated by looking at the impact the measures on individual vessel costs and revenues. However, in the absence of cost data for individual vessels engaged in these fisheries, changes in gross revenues are used a proxy for profitability.

10.9.12 Recordkeeping and Reporting Requirements

The following measures could entail additional recordkeeping and reporting requirements and will be evaluated per the Paperwork Reduction Act as appropriate.

1b (weekly VTRs)
1c (weekly VTRs)
1d (pre-trip notifications)
1e, f, g (VMS reporting requirements)
2b (Standard Atlantic Fisheries Information System confirmations)
2c, 2d, 2e, 2f (requirement for weighing fish)
3e, 3j, 8d (released catch affidavits)
4b, 4c (dockside monitoring)
4d, 4e (hold certifications)
5 (all) Require communication with observer providers and NMFS

10.9.13 Duplication, Overlap, or Conflict with Other Federal Rules

The proposed action does not duplicate or conflict with any other Federal rules. There is some natural overlap between the Atlantic Mackerel and Atlantic Herring fisheries and this overlap and the regulations for the Atlantic herring fishery were taken into consideration during the development of this amendment.

10.9.14 Economic Impacts on Small Entities

All of the small entities described in 10.10.11 could be impacted by this action to some degree. Economic impacts for each alternative are detailed in Section 7 of this document (starts on page 274).
11.0 Literature Cited

Buchsbaum RN. 2005. The role of overfishing, pollution, and habitat degradation on marine fish and shellfish populations of New England: Summary and conclusions. In: Buchsbaum R, Pederson J, Robinson WE, eds. The decline of fisheries resources in New England: Evaluating the impact of
overfishing, contamination, and habitat degradation. Cambridge, MA: MIT Sea Grant College Program, Publication No. MITSG 05-5. 175 p.

Cross, J. 1998. Personal communication. NMFS, NEFSC, Sandy Hook, NJ.

Essential Fish Habitat (EFH) Butterfish Team. Essential Fish Habitat Source Document Atlantic Butterfish, _Peprilus triacanthus_, Life History and Habitat Requirements. Northeast Fisheries Science Center, National Marine Fisheries Service, James J. Howard Laboratory, Highlands, NJ.

Hendrickson, L. 2005. Personal communication. NMFS, NEFSC, Woods Hole, MA.

Mansueti, R.J. 1963. Symbiotic behavior between small fishes and jellyfishes, with new data on that between the stromateoid, Peprilus alepidotus, and the scyphomedusa, Chrysaora quinquecirrha. Copeia 1:40-80.

Mid-Atlantic Fishery Management Council (MAFMC). 1990. Ocean Disposal Policy. Dover, DE.

__________. 1990b. Amendment to the fishery management plan for the bluefish fishery (Draft). Dover, DE.

Rago, P. E., S. E. Wigley, and M. J. Fogarty. 2005. NEFSC bycatch estimation methodology: allocation, precision, and accuracy. NEFSC CRD 05-09

Steimle, F. Personal communication. NMFS, Sandy Hook, N.J.

_________. 1996. NMFS Habitat Conservation Program. NMFS, Silver Spring, MD.

_________. 1997b. National shellfish register nothing to clam up about. NOAA, Silver Spring, MD. 2 p.

_________. 1997c. Four hundred years of Arctic data provide insight into climate change. 2 p.

Amendment 10 .. 444, 445, 459, 465, 488
Amendment 11 .. 13, 101, 444, 445, 459, 478, 479, 482
Amendment 8 .. 449, 509
Amendment 9 .. 450, 461, 465
annual specification .. 477
ASMFC .. 491, 496, 500, 519
assessment .. 223, 224, 225, 444, 476, 477, 482, 484, 485,
492, 494, 501, 509, 513
Atlantic States Marine Fisheries Commission 102, 491
biomass .. 448, 495, 514, 518
bottom trawl .. 462, 491, 492, 498, 505, 513, 516, 518
Butterfish .. 13, 223, 451, 465, 478, 498, 508, 513, 523
bycatch .. 104, 105, 449, 450, 451, 452, 455, 459, 465, 467,
476, 488, 510, 514
codend .. 497, 499, 501
Common dolphin .. 221, 222, 223, 466
cumulative effect .. 444, 445, 447, 464
cumulative effects .. 444, 445, 447, 464
cumulative impact .. 447, 467
cumulative impacts .. 447, 467
discarding .. 448, 467, 484
discards .. 104, 465, 499, 515
dogfish .. 493, 520
economic impact .. 447, 484, 486, 487
economic impacts .. 447, 484, 487
escapement .. 447, 449
esential fish habitat .. 475, 488, 521
Essential Fish Habitat .. 218
flounder .. 494
FMAT .. 479
gear restricted area .. 479
gear restricted areas .. 449
hake 89, 275, 446, 447, 449, 450, 453, 454, 455, 456,
457, 458, 459, 462, 464, 465, 466, 467, 475, 484, 494,
499, 502, 514, 516, 520, 521
Illex .. 107, 109, 224, 225, 449, 450, 465, 466, 491, 493, 494,
495, 496, 497, 498, 500, 501, 502, 503, 505, 506,
507, 508, 512, 514, 515, 516, 517, 518, 521, 522, 523,
524
Incidental .. 523
Leatherback .. 221, 222, 466
Loggerhead .. 221, 222, 466
Loligo .. 107, 109, 224, 225, 447, 449, 450, 451, 465, 466,
494, 495, 496, 497, 500, 501, 502, 505, 506, 507, 508,
517, 519, 520, 521, 522, 523, 524
Mackerel .. 13, 102, 223, 224, 225, 448, 465, 478, 508, 511,
519
MAFMC .. 480, 482, 508
marine mammal .. 222, 223, 446, 482, 522, 523
mesh size .. 447, 449
Mid-Atlantic Fishery Management Council 13, 479, 484,
488, 508, 509
mortality cap .. 451
National Environmental Policy Act .. 101, 444, 478, 484, 488
NEFSC .. 495, 496, 502, 506, 508, 510, 511, 514, 515
NEPA .. 101, 478, 486, 488
NMFS .. 101, 104, 105, 222, 223, 446, 482, 484, 487, 488,
493, 494, 496, 498, 499, 500, 502, 506, 507, 509, 510,
512, 513, 515, 516, 518, 519, 520, 521, 522, 523, 524
NOAA 1, 483, 484, 488, 493, 494, 498, 499, 502, 504, 506,
507, 508, 509, 510, 511, 512, 513, 519, 521, 522, 524
observer .. 222, 451, 452
Ocean pout .. 219
overfished .. 459, 474, 476, 484, 488
overfishing .. 448, 474, 476, 477, 484, 488
overfishing definition .. 448
pilot whale .. 225, 451, 500, 513
pilot whales .. 225, 500, 513
Plaice, American .. 218
Pollock .. 494
practicable .. 104, 105, 451, 475, 476, 477, 482, 488
rebuilding plan .. 477
recruitment .. 109, 499, 512, 515
Redfish .. 219
revenue .. 89, 275, 460, 461, 462
SARC .. 510, 511
SAW .. 510, 511
scoping .. 445, 460
selectivity .. 499, 501
White hake .. 219
White-sided dolphin .. 221, 222, 224, 466
Witch flounder .. 219
List of Appendices that follow this page:

Appendix 3: FMAT Summary Recommendations

Appendix 4: Overlap Between Amendment 14 to the Squid/Mackerel/Butterfish FMP (MAFMC) and Amendment 5 to the Herring FMP (NEFMC)

Appendix 5: Northeast Fishery Science Center Report on Slippage and FISH, NK usage.

Appendix 6: Northeast Fishery Science Center Trawl Survey Data for RH/S

Appendix 7: Summary of SMAST Cooperative River Herring Avoidance Program

Appendix 8: Comments received on the DEIS before the June 2012 Council Briefing Book was created.

Appendix 9: Comments received on the DEIS before the June 2012 Council Meeting but after the June 2012 Council Briefing Book was created (includes links to several large documents that were submitted as supporting materials).

Appendix 10: Amendment 14 Hearing Summaries

Appendix 11: Supplemental reference documents and communications, including letters from NMFS to the MAFMC and NEFMC on Amendments 14 and 5.

Appendix 12: Responses to Public Comments on Amendment 14.