Gulf sturgeon stock assessment efforts - Recent results and future plans

Bill Pine, University of Florida
Steve Martell, University of British Columbia
Jared Flowers, University of Florida
Steph Bolden, NMFS
• Thanks to NMFS, USFWS, and FWC for funding
• Gulf sturgeon researchers particularly Ken Sulak, Mike Randall, and Frank Parauka for data sharing and technical insight
Background

• NOAA & USFWS identified a need for a Gulf sturgeon stock assessment to update current population status and inform recovery criteria revisions
Background

• NOAA & USFWS identified a need for a Gulf sturgeon stock assessment to update current population status and inform recovery criteria revisions

• Initiated the “Gulf sturgeon Data Assessment Review” (G-DAR) modeled after the “SEDAR” process used by NOAA-SEFSC (and others) to assess status of exploited fish stocks
Background

• Data assessment workshop to compile and review available data
 – 15+ years of mark-recapture information in two rivers (Suwannee and Apalachicola Rivers, Florida)
 – <5 years of mark-recapture elsewhere
 – Age-growth information 1970’s and early 1990’s from 2-3 systems
 – Historic landings by river basin (1890’s-1980’s)
Goal: Update status and trends of GS to inform revisions to recovery criteria

Step 1: Stock Reduction Analysis (SRA) – estimate historic stock size and exploitation level

Step 2: Age-structured mark-recapture model (ASMR) – estimated current status and trends in N, mortality, and recruitment

Step 3: Use 1+2+ MS and ESA guidelines to draft quantifiable and measurable recovery criteria goals
Goal: Update status and trends of GS to inform revisions to recovery criteria

Step 1: Stock Reduction Analysis (SRA) – estimate historic stock size and exploitation level

Step 2: Age-structured mark-recapture model (ASMR) – estimated current status and trends in N, mortality, and recruitment

Step 3: Use 1+2+ MS and ESA guidelines to draft quantifiable and measurable recovery criteria goals
Stock reduction analysis (SRA)

- Standard fisheries age-structured population model (age-structure related to growth, survival and recruitment)
- Basic idea: given the life history characteristics of the population, fishery removals, and approximate current status (N or CPUE) what was the historic size?
Commercial landings

Historic landings pattern temporally almost identical (Atlantic ~20x larger)

Both peaked ~1890-1900, crash, low sustained levels for 80+ years after
Key SRA Results

- Population biomass reduced by ~90% following peak harvest
- Currently ~20-30% historic levels and likely slowly rebuilding
- **Much longer time to rebuild population BIOMASS than NUMBERS** for a long lived slow growing species
Key SRA Results

• Provides an approximate potential reference point for “pre” exploitation biomass levels

• Forces assessment of life history parameters (growth, compensation, max age) and compilation of landings and current status indicies
Goal: Update status and trends of GS to inform revisions to recovery criteria

Step 1: Stock Reduction Analysis (SRA) – estimate historic stock size and exploitation level

Step 2: Age-structured mark-recapture model (ASMR) – estimated current status and trends in N, mortality, and recruitment

Step 3: Use 1+2+ MSFCA and ESA guidelines to draft quantifiable and measurable recovery criteria goals
ASMR

• Jolly-Seber type age-structured population model combined with a fisheries VPA model
• Estimates abundance by age, recruitment by birth year, and annual survival

• Key Inputs equal:
 – VB growth parameters (estimated from fin rays and tag-recaptures)
 – Matrices of marked and recaptured animals each year
 – Selectivity patterns
 – Max age and age at maturity
Example ASMR results

Note: G-DAR assessment provides detailed, transparent review of model and data uncertainty and alternative results under different model and data assumptions.
APALACHECOLA RIVER ABUNDANCE

(a) Negative binomial Error structure

(c) Poisson Error structure

ASMR model 1

(b) Negative binomial Error structure

(d) Poisson Error structure

ASMR model 2
APALACHICOLA RIVER NATURAL MORTALITY RATE

Marginal posterior density
APALACHICOLA RIVER AGE-1 RECRUITS
Key ASMR findings

• Modeling approach is very promising for GS
• Apalachicola – Abundance low, but some evidence for s-l-o-w recovery, mortality estimates low and similar to life-history based estimates
• Suwannee – Abundance estimates variable in recent years, mortality estimates high (??)
• Capture probability low (5-15%), not uncommon in fisheries studies
Key ASMR findings

• Changes in monitoring programs (lack of sustained funding) adds complexity

• Difficult to separate mortality from low capture probability in given year (did you not catch a fish because it was dead or because it wasn’t there)
Key ASMR findings

• As with most stock assessments, independent estimates of natural mortality rate GREATLY improve ability to estimate abundance and recruitment

• G-DAR review panel recommended telemetry study to estimate M
 – NMFS/USFWS launched this study in 2010
Lessons

- SRA and ASMR provide a good framework for assessing where we have been and where we are with Gulf sturgeon
- Require extensive tagging data...
- Alternative assessments possible for data poor systems
Goal: Update status and trends of GS to inform revisions to recovery criteria

Step 1: Stock Reduction Analysis (SRA) – estimate historic stock size and exploitation level

Step 2: Age-structured mark-recapture model (ASMR) – estimate current status and trends in N, mortality, and recruitment

Step 3: Use 1+2+ MSFCA and ESA guidelines to draft quantifiable and measurable recovery criteria goals
Next steps….

• Much can be learned from recovering and recovered exploited stocks
• Magnuson-Stevens provided a clearer definition of target abundance levels such as “recovered” and “recovery” than the ESA
• Use G-DAR assessment + lessons from other exploited stocks + Magnuson reference points = new recovery criteria guidelines (?)
• Great thesis project…
Thanks!!

billpine@ufl.edu